Simplify redirected edges.
[libfirm] / optimal.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Optimal reductions and helper functions.
23  * @date    28.12.2009
24  * @author  Sebastian Buchwald
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "adt/array.h"
30 #include "assert.h"
31 #include "error.h"
32
33 #include "bucket.h"
34 #if     KAPS_DUMP
35 #include "html_dumper.h"
36 #endif
37 #include "kaps.h"
38 #include "matrix.h"
39 #include "optimal.h"
40 #include "pbqp_edge.h"
41 #include "pbqp_edge_t.h"
42 #include "pbqp_node.h"
43 #include "pbqp_node_t.h"
44 #include "vector.h"
45
46 #include "plist.h"
47 #include "timing.h"
48
49 pbqp_edge **edge_bucket;
50 pbqp_edge **rm_bucket;
51 pbqp_node **node_buckets[4];
52 pbqp_node **reduced_bucket = NULL;
53 pbqp_node  *merged_node = NULL;
54 static int  buckets_filled = 0;
55
56 static void insert_into_edge_bucket(pbqp_edge *edge)
57 {
58         if (edge_bucket_contains(edge_bucket, edge)) {
59                 /* Edge is already inserted. */
60                 return;
61         }
62
63         edge_bucket_insert(&edge_bucket, edge);
64 }
65
66 static void insert_into_rm_bucket(pbqp_edge *edge)
67 {
68         if (edge_bucket_contains(rm_bucket, edge)) {
69                 /* Edge is already inserted. */
70                 return;
71         }
72
73         edge_bucket_insert(&rm_bucket, edge);
74 }
75
76 static void init_buckets(void)
77 {
78         int i;
79
80         edge_bucket_init(&edge_bucket);
81         edge_bucket_init(&rm_bucket);
82         node_bucket_init(&reduced_bucket);
83
84         for (i = 0; i < 4; ++i) {
85                 node_bucket_init(&node_buckets[i]);
86         }
87 }
88
89 void free_buckets(void)
90 {
91         int i;
92
93         for (i = 0; i < 4; ++i) {
94                 node_bucket_free(&node_buckets[i]);
95         }
96
97         edge_bucket_free(&edge_bucket);
98         edge_bucket_free(&rm_bucket);
99         node_bucket_free(&reduced_bucket);
100
101         buckets_filled = 0;
102 }
103
104 void fill_node_buckets(pbqp *pbqp)
105 {
106         unsigned node_index;
107         unsigned node_len;
108
109         assert(pbqp);
110         node_len = pbqp->num_nodes;
111
112         #if KAPS_TIMING
113                 ir_timer_t *t_fill_buckets = ir_timer_new();
114                 ir_timer_start(t_fill_buckets);
115         #endif
116
117         for (node_index = 0; node_index < node_len; ++node_index) {
118                 unsigned   degree;
119                 pbqp_node *node = get_node(pbqp, node_index);
120
121                 if (!node) continue;
122
123                 degree = pbqp_node_get_degree(node);
124
125                 /* We have only one bucket for nodes with arity >= 3. */
126                 if (degree > 3) {
127                         degree = 3;
128                 }
129
130                 node_bucket_insert(&node_buckets[degree], node);
131         }
132
133         buckets_filled = 1;
134
135         #if KAPS_TIMING
136                 ir_timer_stop(t_fill_buckets);
137                 printf("PBQP Fill Nodes into buckets: %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_fill_buckets) / 1000.0);
138         #endif
139 }
140
141 static void normalize_towards_source(pbqp_edge *edge)
142 {
143         pbqp_matrix    *mat;
144         pbqp_node      *src_node;
145         pbqp_node      *tgt_node;
146         vector         *src_vec;
147         vector         *tgt_vec;
148         unsigned        src_len;
149         unsigned        tgt_len;
150         unsigned        src_index;
151         unsigned        new_infinity = 0;
152
153         assert(edge);
154
155         src_node = edge->src;
156         tgt_node = edge->tgt;
157         assert(src_node);
158         assert(tgt_node);
159
160         src_vec = src_node->costs;
161         tgt_vec = tgt_node->costs;
162         assert(src_vec);
163         assert(tgt_vec);
164
165         src_len = src_vec->len;
166         tgt_len = tgt_vec->len;
167         assert(src_len > 0);
168         assert(tgt_len > 0);
169
170         mat = edge->costs;
171         assert(mat);
172
173         /* Normalize towards source node. */
174         for (src_index = 0; src_index < src_len; ++src_index) {
175                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
176
177                 if (min != 0) {
178                         if (src_vec->entries[src_index].data == INF_COSTS) {
179                                 pbqp_matrix_set_row_value(mat, src_index, 0);
180                                 continue;
181                         }
182
183                         pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
184                         src_vec->entries[src_index].data = pbqp_add(
185                                         src_vec->entries[src_index].data, min);
186
187                         if (min == INF_COSTS) {
188                                 new_infinity = 1;
189                         }
190                 }
191         }
192
193         if (new_infinity) {
194                 unsigned edge_index;
195                 unsigned edge_len = pbqp_node_get_degree(src_node);
196
197                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
198                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
199
200                         if (edge_candidate != edge) {
201                                 insert_into_edge_bucket(edge_candidate);
202                         }
203                 }
204         }
205 }
206
207 static void normalize_towards_target(pbqp_edge *edge)
208 {
209         pbqp_matrix    *mat;
210         pbqp_node      *src_node;
211         pbqp_node      *tgt_node;
212         vector         *src_vec;
213         vector         *tgt_vec;
214         unsigned        src_len;
215         unsigned        tgt_len;
216         unsigned        tgt_index;
217         unsigned        new_infinity = 0;
218
219         assert(edge);
220
221         src_node = edge->src;
222         tgt_node = edge->tgt;
223         assert(src_node);
224         assert(tgt_node);
225
226         src_vec = src_node->costs;
227         tgt_vec = tgt_node->costs;
228         assert(src_vec);
229         assert(tgt_vec);
230
231         src_len = src_vec->len;
232         tgt_len = tgt_vec->len;
233         assert(src_len > 0);
234         assert(tgt_len > 0);
235
236         mat = edge->costs;
237         assert(mat);
238
239         /* Normalize towards target node. */
240         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
241                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
242
243                 if (min != 0) {
244                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
245                                 pbqp_matrix_set_col_value(mat, tgt_index, 0);
246                                 continue;
247                         }
248
249                         pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
250                         tgt_vec->entries[tgt_index].data = pbqp_add(
251                                         tgt_vec->entries[tgt_index].data, min);
252
253                         if (min == INF_COSTS) {
254                                 new_infinity = 1;
255                         }
256                 }
257         }
258
259         if (new_infinity) {
260                 unsigned edge_index;
261                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
262
263                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
264                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
265
266                         if (edge_candidate != edge) {
267                                 insert_into_edge_bucket(edge_candidate);
268                         }
269                 }
270         }
271 }
272
273 /**
274  * Tries to apply RM for the source node of the given edge.
275  *
276  * Checks whether the source node of edge can be merged into the target node of
277  * edge, and performs the merge, if possible.
278  */
279 static void merge_source_into_target(pbqp *pbqp, pbqp_edge *edge)
280 {
281         pbqp_matrix    *mat;
282         pbqp_node      *src_node;
283         pbqp_node      *tgt_node;
284         vector         *src_vec;
285         vector         *tgt_vec;
286         unsigned       *mapping;
287         unsigned        src_len;
288         unsigned        tgt_len;
289         unsigned        src_index;
290         unsigned        tgt_index;
291         unsigned        edge_index;
292         unsigned        edge_len;
293
294         assert(pbqp);
295         assert(edge);
296
297         src_node = edge->src;
298         tgt_node = edge->tgt;
299         assert(src_node);
300         assert(tgt_node);
301
302         src_vec = src_node->costs;
303         tgt_vec = tgt_node->costs;
304         assert(src_vec);
305         assert(tgt_vec);
306
307         src_len = src_vec->len;
308         tgt_len = tgt_vec->len;
309
310         /* Matrizes are normalized. */
311         assert(src_len > 1);
312         assert(tgt_len > 1);
313
314         mat = edge->costs;
315         assert(mat);
316
317         mapping = NEW_ARR_F(unsigned, tgt_len);
318
319         /* Check that each column has at most one zero entry. */
320         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
321                 unsigned onlyOneZero = 0;
322
323                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
324                         continue;
325
326                 for (src_index = 0; src_index < src_len; ++src_index) {
327                         if (src_vec->entries[src_index].data == INF_COSTS)
328                                 continue;
329
330                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
331                                 continue;
332
333                         /* Matrix entry is finite. */
334                         if (onlyOneZero) {
335                                 DEL_ARR_F(mapping);
336                                 return;
337                         }
338
339                         onlyOneZero = 1;
340                         mapping[tgt_index] = src_index;
341                 }
342         }
343
344         /* We know that we can merge the source node into the target node. */
345         edge_len = pbqp_node_get_degree(src_node);
346
347 #if KAPS_STATISTIC
348         pbqp->num_rm++;
349 #endif
350
351         /* Reconnect the source's edges with the target node. */
352         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
353                 pbqp_edge   *old_edge = src_node->edges[edge_index];
354                 pbqp_edge   *new_edge;
355                 pbqp_matrix *old_matrix;
356                 pbqp_matrix *new_matrix;
357                 pbqp_node   *other_node;
358                 vector      *other_vec;
359                 unsigned     other_len;
360                 unsigned     other_index;
361                 unsigned     tgt_index;
362
363                 assert(old_edge);
364
365                 if (old_edge == edge)
366                         continue;
367
368                 old_matrix = old_edge->costs;
369                 assert(old_matrix);
370
371                 if (old_edge->tgt == src_node) {
372                         other_node = old_edge->src;
373                         other_len  = old_matrix->rows;
374                 }
375                 else {
376                         other_node = old_edge->tgt;
377                         other_len = old_matrix->cols;
378                 }
379                 assert(other_node);
380                 other_vec = other_node->costs;
381
382                 new_matrix = pbqp_matrix_alloc(pbqp, tgt_len, other_len);
383
384                 /* Source node selects the column of the old_matrix. */
385                 if (old_edge->tgt == src_node) {
386                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
387                                 unsigned src_index = mapping[tgt_index];
388
389                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
390                                         continue;
391
392                                 for (other_index = 0; other_index < other_len; ++other_index) {
393                                         if (other_vec->entries[other_index].data == INF_COSTS)
394                                                 continue;
395
396                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[other_index*src_len+src_index];
397                                 }
398                         }
399                 }
400                 /* Source node selects the row of the old_matrix. */
401                 else {
402                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
403                                 unsigned src_index = mapping[tgt_index];
404
405                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
406                                         continue;
407
408                                 for (other_index = 0; other_index < other_len; ++other_index) {
409                                         if (other_vec->entries[other_index].data == INF_COSTS)
410                                                 continue;
411
412                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[src_index*other_len+other_index];
413                                 }
414                         }
415                 }
416
417                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
418
419                 add_edge_costs(pbqp, tgt_node->index, other_node->index, new_matrix);
420
421                 if (new_edge == NULL) {
422                         reorder_node_after_edge_insertion(tgt_node);
423                         reorder_node_after_edge_insertion(other_node);
424                 }
425
426                 delete_edge(old_edge);
427
428                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
429                 simplify_edge(pbqp, new_edge);
430
431                 insert_into_rm_bucket(new_edge);
432         }
433
434 #if KAPS_STATISTIC
435         pbqp->num_r1--;
436 #endif
437 }
438
439 /**
440  * Tries to apply RM for the target node of the given edge.
441  *
442  * Checks whether the target node of edge can be merged into the source node of
443  * edge, and performs the merge, if possible.
444  */
445 static void merge_target_into_source(pbqp *pbqp, pbqp_edge *edge)
446 {
447         pbqp_matrix    *mat;
448         pbqp_node      *src_node;
449         pbqp_node      *tgt_node;
450         vector         *src_vec;
451         vector         *tgt_vec;
452         unsigned       *mapping;
453         unsigned        src_len;
454         unsigned        tgt_len;
455         unsigned        src_index;
456         unsigned        tgt_index;
457         unsigned        edge_index;
458         unsigned        edge_len;
459
460         assert(pbqp);
461         assert(edge);
462
463         src_node = edge->src;
464         tgt_node = edge->tgt;
465         assert(src_node);
466         assert(tgt_node);
467
468         src_vec = src_node->costs;
469         tgt_vec = tgt_node->costs;
470         assert(src_vec);
471         assert(tgt_vec);
472
473         src_len = src_vec->len;
474         tgt_len = tgt_vec->len;
475
476         /* Matrizes are normalized. */
477         assert(src_len > 1);
478         assert(tgt_len > 1);
479
480         mat = edge->costs;
481         assert(mat);
482
483         mapping = NEW_ARR_F(unsigned, src_len);
484
485         /* Check that each row has at most one zero entry. */
486         for (src_index = 0; src_index < src_len; ++src_index) {
487                 unsigned onlyOneZero = 0;
488
489                 if (src_vec->entries[src_index].data == INF_COSTS)
490                         continue;
491
492                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
493                         if (tgt_vec->entries[tgt_index].data == INF_COSTS)
494                                 continue;
495
496                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
497                                 continue;
498
499                         /* Matrix entry is finite. */
500                         if (onlyOneZero) {
501                                 DEL_ARR_F(mapping);
502                                 return;
503                         }
504
505                         onlyOneZero = 1;
506                         mapping[src_index] = tgt_index;
507                 }
508         }
509
510         /* We know that we can merge the target node into the source node. */
511         edge_len = pbqp_node_get_degree(tgt_node);
512
513 #if KAPS_STATISTIC
514         pbqp->num_rm++;
515 #endif
516
517         /* Reconnect the target's edges with the source node. */
518         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
519                 pbqp_edge   *old_edge = tgt_node->edges[edge_index];
520                 pbqp_edge   *new_edge;
521                 pbqp_matrix *old_matrix;
522                 pbqp_matrix *new_matrix;
523                 pbqp_node   *other_node;
524                 vector      *other_vec;
525                 unsigned     other_len;
526                 unsigned     other_index;
527                 unsigned     src_index;
528
529                 assert(old_edge);
530
531                 if (old_edge == edge)
532                         continue;
533
534                 old_matrix = old_edge->costs;
535                 assert(old_matrix);
536
537                 if (old_edge->tgt == tgt_node) {
538                         other_node = old_edge->src;
539                         other_len  = old_matrix->rows;
540                 }
541                 else {
542                         other_node = old_edge->tgt;
543                         other_len = old_matrix->cols;
544                 }
545                 assert(other_node);
546                 other_vec = other_node->costs;
547
548                 new_matrix = pbqp_matrix_alloc(pbqp, src_len, other_len);
549
550                 /* Target node selects the column of the old_matrix. */
551                 if (old_edge->tgt == tgt_node) {
552                         for (src_index = 0; src_index < src_len; ++src_index) {
553                                 unsigned tgt_index = mapping[src_index];
554
555                                 if (src_vec->entries[src_index].data == INF_COSTS)
556                                         continue;
557
558                                 for (other_index = 0; other_index < other_len; ++other_index) {
559                                         if (other_vec->entries[other_index].data == INF_COSTS)
560                                                 continue;
561
562                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[other_index*tgt_len+tgt_index];
563                                 }
564                         }
565                 }
566                 /* Source node selects the row of the old_matrix. */
567                 else {
568                         for (src_index = 0; src_index < src_len; ++src_index) {
569                                 unsigned tgt_index = mapping[src_index];
570
571                                 if (src_vec->entries[src_index].data == INF_COSTS)
572                                         continue;
573
574                                 for (other_index = 0; other_index < other_len; ++other_index) {
575                                         if (other_vec->entries[other_index].data == INF_COSTS)
576                                                 continue;
577
578                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[tgt_index*other_len+other_index];
579                                 }
580                         }
581                 }
582
583                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
584
585                 add_edge_costs(pbqp, src_node->index, other_node->index, new_matrix);
586
587                 if (new_edge == NULL) {
588                         reorder_node_after_edge_insertion(src_node);
589                         reorder_node_after_edge_insertion(other_node);
590                 }
591
592                 delete_edge(old_edge);
593
594                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
595                 simplify_edge(pbqp, new_edge);
596
597                 insert_into_rm_bucket(new_edge);
598         }
599
600 #if KAPS_STATISTIC
601         pbqp->num_r1--;
602 #endif
603 }
604
605 /**
606  * Merge neighbors into the given node.
607  */
608 void apply_RM(pbqp *pbqp, pbqp_node *node)
609 {
610         pbqp_edge **edges;
611         unsigned    edge_index;
612         unsigned    edge_len;
613
614         assert(node);
615         assert(pbqp);
616
617         edges    = node->edges;
618         edge_len = pbqp_node_get_degree(node);
619
620         /* Check all incident edges. */
621         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
622                 pbqp_edge *edge = edges[edge_index];
623
624                 insert_into_rm_bucket(edge);
625         }
626
627         /* ALAP: Merge neighbors into given node. */
628         while(edge_bucket_get_length(rm_bucket) > 0) {
629                 pbqp_edge *edge = edge_bucket_pop(&rm_bucket);
630                 assert(edge);
631
632                 /* If the edge is not deleted: Try a merge. */
633                 if (edge->src == node)
634                         merge_target_into_source(pbqp, edge);
635                 else if (edge->tgt == node)
636                         merge_source_into_target(pbqp, edge);
637         }
638
639         merged_node = node;
640 }
641
642 void reorder_node_after_edge_deletion(pbqp_node *node)
643 {
644         unsigned    degree     = pbqp_node_get_degree(node);
645         /* Assume node lost one incident edge. */
646         unsigned    old_degree = degree + 1;
647
648         if (!buckets_filled) return;
649
650         /* Same bucket as before */
651         if (degree > 2) return;
652
653         /* Delete node from old bucket... */
654         node_bucket_remove(&node_buckets[old_degree], node);
655
656         /* ..and add to new one. */
657         node_bucket_insert(&node_buckets[degree], node);
658 }
659
660 void reorder_node_after_edge_insertion(pbqp_node *node)
661 {
662         unsigned    degree     = pbqp_node_get_degree(node);
663         /* Assume node lost one incident edge. */
664         unsigned    old_degree = degree - 1;
665
666         if (!buckets_filled) return;
667
668         /* Same bucket as before */
669         if (old_degree > 2) return;
670
671         /* Delete node from old bucket... */
672         node_bucket_remove(&node_buckets[old_degree], node);
673
674         /* ..and add to new one. */
675         node_bucket_insert(&node_buckets[degree], node);
676 }
677
678 void simplify_edge(pbqp *pbqp, pbqp_edge *edge)
679 {
680         pbqp_matrix    *mat;
681         pbqp_node      *src_node;
682         pbqp_node      *tgt_node;
683         vector         *src_vec;
684         vector         *tgt_vec;
685         int             src_len;
686         int             tgt_len;
687
688         assert(pbqp);
689         assert(edge);
690
691         (void) pbqp;
692
693         src_node = edge->src;
694         tgt_node = edge->tgt;
695         assert(src_node);
696         assert(tgt_node);
697
698         /* If edge are already deleted, we have nothing to do. */
699         if (is_deleted(edge))
700                 return;
701
702 #if     KAPS_DUMP
703         if (pbqp->dump_file) {
704                 char txt[100];
705                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
706                 dump_section(pbqp->dump_file, 3, txt);
707         }
708 #endif
709
710         src_vec = src_node->costs;
711         tgt_vec = tgt_node->costs;
712         assert(src_vec);
713         assert(tgt_vec);
714
715         src_len = src_vec->len;
716         tgt_len = tgt_vec->len;
717         assert(src_len > 0);
718         assert(tgt_len > 0);
719
720         mat = edge->costs;
721         assert(mat);
722
723 #if     KAPS_DUMP
724         if (pbqp->dump_file) {
725                 fputs("Input:<br>\n", pbqp->dump_file);
726                 dump_simplifyedge(pbqp, edge);
727         }
728 #endif
729
730         normalize_towards_source(edge);
731         normalize_towards_target(edge);
732
733 #if     KAPS_DUMP
734         if (pbqp->dump_file) {
735                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
736                 dump_simplifyedge(pbqp, edge);
737         }
738 #endif
739
740         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
741 #if     KAPS_DUMP
742                 if (pbqp->dump_file) {
743                         fputs("edge has been eliminated<br>\n", pbqp->dump_file);
744                 }
745 #endif
746
747 #if KAPS_STATISTIC
748                 pbqp->num_edges++;
749 #endif
750
751                 delete_edge(edge);
752         }
753 }
754
755 void initial_simplify_edges(pbqp *pbqp)
756 {
757         unsigned node_index;
758         unsigned node_len;
759
760         assert(pbqp);
761
762         #if KAPS_TIMING
763                 ir_timer_t *t_int_simpl = ir_timer_new();
764                 ir_timer_start(t_int_simpl);
765         #endif
766
767 #if     KAPS_DUMP
768         if (pbqp->dump_file) {
769                 pbqp_dump_input(pbqp);
770                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
771         }
772 #endif
773
774         node_len = pbqp->num_nodes;
775
776         init_buckets();
777
778         /* First simplify all edges. */
779         for (node_index = 0; node_index < node_len; ++node_index) {
780                 unsigned    edge_index;
781                 pbqp_node  *node = get_node(pbqp, node_index);
782                 pbqp_edge **edges;
783                 unsigned    edge_len;
784
785                 if (!node) continue;
786
787                 edges = node->edges;
788                 edge_len = pbqp_node_get_degree(node);
789
790                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
791                         pbqp_edge *edge = edges[edge_index];
792
793                         /* Simplify only once per edge. */
794                         if (node != edge->src) continue;
795
796                         simplify_edge(pbqp, edge);
797                 }
798         }
799
800         #if KAPS_TIMING
801                 ir_timer_stop(t_int_simpl);
802                 printf("PBQP Initial simplify edges:  %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_int_simpl) / 1000.0);
803         #endif
804 }
805
806 num determine_solution(pbqp *pbqp)
807 {
808         unsigned node_index;
809         unsigned node_len;
810         num      solution   = 0;
811
812         #if KAPS_TIMING
813                 ir_timer_t *t_det_solution = ir_timer_new();
814                 ir_timer_reset_and_start(t_det_solution);
815         #endif
816
817 #if     KAPS_DUMP
818         FILE     *file;
819 #endif
820
821         assert(pbqp);
822
823         (void) pbqp;
824
825 #if     KAPS_DUMP
826         file = pbqp->dump_file;
827
828         if (file) {
829                 dump_section(file, 1, "4. Determine Solution/Minimum");
830                 dump_section(file, 2, "4.1. Trivial Solution");
831         }
832 #endif
833
834         /* Solve trivial nodes and calculate solution. */
835         node_len = node_bucket_get_length(node_buckets[0]);
836
837 #if KAPS_STATISTIC
838         pbqp->num_r0 = node_len;
839 #endif
840
841         for (node_index = 0; node_index < node_len; ++node_index) {
842                 pbqp_node *node = node_buckets[0][node_index];
843                 assert(node);
844
845                 node->solution = vector_get_min_index(node->costs);
846                 solution       = pbqp_add(solution,
847                                 node->costs->entries[node->solution].data);
848
849 #if     KAPS_DUMP
850                 if (file) {
851                         fprintf(file, "node n%d is set to %d<br>\n", node->index, node->solution);
852                         dump_node(file, node);
853                 }
854 #endif
855         }
856
857 #if     KAPS_DUMP
858         if (file) {
859                 dump_section(file, 2, "Minimum");
860 #if KAPS_USE_UNSIGNED
861                 fprintf(file, "Minimum is equal to %u.", solution);
862 #else
863                 fprintf(file, "Minimum is equal to %lld.", solution);
864 #endif
865         }
866 #endif
867
868         #if KAPS_TIMING
869                 ir_timer_stop(t_det_solution);
870                 printf("PBQP Determine Solution:      %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_det_solution) / 1000.0);
871         #endif
872
873         return solution;
874 }
875
876 static void back_propagate_RI(pbqp *pbqp, pbqp_node *node)
877 {
878         pbqp_edge   *edge;
879         pbqp_node   *other;
880         pbqp_matrix *mat;
881         vector      *vec;
882         int          is_src;
883
884         assert(pbqp);
885         assert(node);
886
887         (void) pbqp;
888
889         edge = node->edges[0];
890         mat = edge->costs;
891         is_src = edge->src == node;
892         vec = node->costs;
893
894         if (is_src) {
895                 other = edge->tgt;
896                 assert(other);
897
898                 node->solution = pbqp_matrix_get_col_min_index(mat, other->solution, vec);
899         } else {
900                 other = edge->src;
901                 assert(other);
902
903                 node->solution = pbqp_matrix_get_row_min_index(mat, other->solution, vec);
904         }
905
906 #if     KAPS_DUMP
907         if (pbqp->dump_file) {
908                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
909         }
910 #endif
911 }
912
913 static void back_propagate_RII(pbqp *pbqp, pbqp_node *node)
914 {
915         pbqp_edge   *src_edge   = node->edges[0];
916         pbqp_edge   *tgt_edge   = node->edges[1];
917         int          src_is_src = src_edge->src == node;
918         int          tgt_is_src = tgt_edge->src == node;
919         pbqp_matrix *src_mat;
920         pbqp_matrix *tgt_mat;
921         pbqp_node   *src_node;
922         pbqp_node   *tgt_node;
923         vector      *vec;
924         vector      *node_vec;
925         unsigned     col_index;
926         unsigned     row_index;
927
928         assert(pbqp);
929
930         if (src_is_src) {
931                 src_node = src_edge->tgt;
932         } else {
933                 src_node = src_edge->src;
934         }
935
936         if (tgt_is_src) {
937                 tgt_node = tgt_edge->tgt;
938         } else {
939                 tgt_node = tgt_edge->src;
940         }
941
942         /* Swap nodes if necessary. */
943         if (tgt_node->index < src_node->index) {
944                 pbqp_node *tmp_node;
945                 pbqp_edge *tmp_edge;
946
947                 tmp_node = src_node;
948                 src_node = tgt_node;
949                 tgt_node = tmp_node;
950
951                 tmp_edge = src_edge;
952                 src_edge = tgt_edge;
953                 tgt_edge = tmp_edge;
954
955                 src_is_src = src_edge->src == node;
956                 tgt_is_src = tgt_edge->src == node;
957         }
958
959         src_mat = src_edge->costs;
960         tgt_mat = tgt_edge->costs;
961
962         node_vec = node->costs;
963
964         row_index = src_node->solution;
965         col_index = tgt_node->solution;
966
967         vec = vector_copy(pbqp, node_vec);
968
969         if (src_is_src) {
970                 vector_add_matrix_col(vec, src_mat, row_index);
971         } else {
972                 vector_add_matrix_row(vec, src_mat, row_index);
973         }
974
975         if (tgt_is_src) {
976                 vector_add_matrix_col(vec, tgt_mat, col_index);
977         } else {
978                 vector_add_matrix_row(vec, tgt_mat, col_index);
979         }
980
981         node->solution = vector_get_min_index(vec);
982
983 #if     KAPS_DUMP
984         if (pbqp->dump_file) {
985                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
986         }
987 #endif
988
989         obstack_free(&pbqp->obstack, vec);
990 }
991
992 void back_propagate(pbqp *pbqp)
993 {
994         unsigned node_index;
995         unsigned node_len   = node_bucket_get_length(reduced_bucket);
996
997         assert(pbqp);
998
999 #if     KAPS_DUMP
1000         if (pbqp->dump_file) {
1001                 dump_section(pbqp->dump_file, 2, "Back Propagation");
1002         }
1003 #endif
1004
1005         for (node_index = node_len; node_index > 0; --node_index) {
1006                 pbqp_node *node = reduced_bucket[node_index - 1];
1007
1008                 switch (pbqp_node_get_degree(node)) {
1009                         case 1:
1010                                 back_propagate_RI(pbqp, node);
1011                                 break;
1012                         case 2:
1013                                 back_propagate_RII(pbqp, node);
1014                                 break;
1015                         default:
1016                                 panic("Only nodes with degree one or two should be in this bucket");
1017                                 break;
1018                 }
1019         }
1020 }
1021
1022 void apply_edge(pbqp *pbqp)
1023 {
1024         pbqp_edge *edge = edge_bucket_pop(&edge_bucket);
1025
1026         simplify_edge(pbqp, edge);
1027 }
1028
1029 void apply_RI(pbqp *pbqp)
1030 {
1031         pbqp_node   *node       = node_bucket_pop(&node_buckets[1]);
1032         pbqp_edge   *edge       = node->edges[0];
1033         pbqp_matrix *mat        = edge->costs;
1034         int          is_src     = edge->src == node;
1035         pbqp_node   *other_node;
1036
1037         (void ) pbqp;
1038         assert(pbqp_node_get_degree(node) == 1);
1039
1040         if (is_src) {
1041                 other_node = edge->tgt;
1042         } else {
1043                 other_node = edge->src;
1044         }
1045
1046 #if     KAPS_DUMP
1047         if (pbqp->dump_file) {
1048                 char     txt[100];
1049                 sprintf(txt, "RI-Reduction of Node n%d", node->index);
1050                 dump_section(pbqp->dump_file, 2, txt);
1051                 pbqp_dump_graph(pbqp);
1052                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1053                 dump_node(pbqp->dump_file, node);
1054                 dump_node(pbqp->dump_file, other_node);
1055                 dump_edge(pbqp->dump_file, edge);
1056         }
1057 #endif
1058
1059         if (is_src) {
1060                 pbqp_matrix_add_to_all_cols(mat, node->costs);
1061                 normalize_towards_target(edge);
1062         } else {
1063                 pbqp_matrix_add_to_all_rows(mat, node->costs);
1064                 normalize_towards_source(edge);
1065         }
1066         disconnect_edge(other_node, edge);
1067
1068 #if     KAPS_DUMP
1069         if (pbqp->dump_file) {
1070                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1071                 dump_node(pbqp->dump_file, other_node);
1072         }
1073 #endif
1074
1075         reorder_node_after_edge_deletion(other_node);
1076
1077 #if KAPS_STATISTIC
1078         pbqp->num_r1++;
1079 #endif
1080
1081         /* Add node to back propagation list. */
1082         node_bucket_insert(&reduced_bucket, node);
1083 }
1084
1085 void apply_RII(pbqp *pbqp)
1086 {
1087         pbqp_node   *node       = node_bucket_pop(&node_buckets[2]);
1088         pbqp_edge   *src_edge   = node->edges[0];
1089         pbqp_edge   *tgt_edge   = node->edges[1];
1090         int          src_is_src = src_edge->src == node;
1091         int          tgt_is_src = tgt_edge->src == node;
1092         pbqp_matrix *src_mat;
1093         pbqp_matrix *tgt_mat;
1094         pbqp_node   *src_node;
1095         pbqp_node   *tgt_node;
1096         pbqp_matrix *mat;
1097         vector      *vec;
1098         vector      *node_vec;
1099         vector      *src_vec;
1100         vector      *tgt_vec;
1101         unsigned     col_index;
1102         unsigned     col_len;
1103         unsigned     row_index;
1104         unsigned     row_len;
1105         unsigned     node_len;
1106
1107         assert(pbqp);
1108         assert(pbqp_node_get_degree(node) == 2);
1109
1110         if (src_is_src) {
1111                 src_node = src_edge->tgt;
1112         } else {
1113                 src_node = src_edge->src;
1114         }
1115
1116         if (tgt_is_src) {
1117                 tgt_node = tgt_edge->tgt;
1118         } else {
1119                 tgt_node = tgt_edge->src;
1120         }
1121
1122         /* Swap nodes if necessary. */
1123         if (tgt_node->index < src_node->index) {
1124                 pbqp_node *tmp_node;
1125                 pbqp_edge *tmp_edge;
1126
1127                 tmp_node = src_node;
1128                 src_node = tgt_node;
1129                 tgt_node = tmp_node;
1130
1131                 tmp_edge = src_edge;
1132                 src_edge = tgt_edge;
1133                 tgt_edge = tmp_edge;
1134
1135                 src_is_src = src_edge->src == node;
1136                 tgt_is_src = tgt_edge->src == node;
1137         }
1138
1139 #if     KAPS_DUMP
1140         if (pbqp->dump_file) {
1141                 char     txt[100];
1142                 sprintf(txt, "RII-Reduction of Node n%d", node->index);
1143                 dump_section(pbqp->dump_file, 2, txt);
1144                 pbqp_dump_graph(pbqp);
1145                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1146                 dump_node(pbqp->dump_file, src_node);
1147                 dump_edge(pbqp->dump_file, src_edge);
1148                 dump_node(pbqp->dump_file, node);
1149                 dump_edge(pbqp->dump_file, tgt_edge);
1150                 dump_node(pbqp->dump_file, tgt_node);
1151         }
1152 #endif
1153
1154         src_mat = src_edge->costs;
1155         tgt_mat = tgt_edge->costs;
1156
1157         src_vec  = src_node->costs;
1158         tgt_vec  = tgt_node->costs;
1159         node_vec = node->costs;
1160
1161         row_len  = src_vec->len;
1162         col_len  = tgt_vec->len;
1163         node_len = node_vec->len;
1164
1165         mat = pbqp_matrix_alloc(pbqp, row_len, col_len);
1166
1167         for (row_index = 0; row_index < row_len; ++row_index) {
1168                 for (col_index = 0; col_index < col_len; ++col_index) {
1169                         vec = vector_copy(pbqp, node_vec);
1170
1171                         if (src_is_src) {
1172                                 vector_add_matrix_col(vec, src_mat, row_index);
1173                         } else {
1174                                 vector_add_matrix_row(vec, src_mat, row_index);
1175                         }
1176
1177                         if (tgt_is_src) {
1178                                 vector_add_matrix_col(vec, tgt_mat, col_index);
1179                         } else {
1180                                 vector_add_matrix_row(vec, tgt_mat, col_index);
1181                         }
1182
1183                         mat->entries[row_index * col_len + col_index] = vector_get_min(vec);
1184
1185                         obstack_free(&pbqp->obstack, vec);
1186                 }
1187         }
1188
1189         pbqp_edge *edge = get_edge(pbqp, src_node->index, tgt_node->index);
1190
1191         /* Disconnect node. */
1192         disconnect_edge(src_node, src_edge);
1193         disconnect_edge(tgt_node, tgt_edge);
1194
1195 #if KAPS_STATISTIC
1196         pbqp->num_r2++;
1197 #endif
1198
1199         /* Add node to back propagation list. */
1200         node_bucket_insert(&reduced_bucket, node);
1201
1202         if (edge == NULL) {
1203                 edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat);
1204         } else {
1205                 // matrix
1206                 pbqp_matrix_add(edge->costs, mat);
1207
1208                 /* Free local matrix. */
1209                 obstack_free(&pbqp->obstack, mat);
1210
1211                 reorder_node_after_edge_deletion(src_node);
1212                 reorder_node_after_edge_deletion(tgt_node);
1213         }
1214
1215 #if     KAPS_DUMP
1216         if (pbqp->dump_file) {
1217                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1218                 dump_edge(pbqp->dump_file, edge);
1219         }
1220 #endif
1221
1222         /* Edge has changed so we simplify it. */
1223         simplify_edge(pbqp, edge);
1224 }
1225
1226 static void select_column(pbqp_edge *edge, unsigned col_index)
1227 {
1228         pbqp_matrix    *mat;
1229         pbqp_node      *src_node;
1230         pbqp_node      *tgt_node;
1231         vector         *src_vec;
1232         vector         *tgt_vec;
1233         unsigned        src_len;
1234         unsigned        tgt_len;
1235         unsigned        src_index;
1236         unsigned        new_infinity = 0;
1237
1238         assert(edge);
1239
1240         src_node = edge->src;
1241         tgt_node = edge->tgt;
1242         assert(src_node);
1243         assert(tgt_node);
1244
1245         src_vec = src_node->costs;
1246         tgt_vec = tgt_node->costs;
1247         assert(src_vec);
1248         assert(tgt_vec);
1249
1250         src_len = src_vec->len;
1251         tgt_len = tgt_vec->len;
1252         assert(src_len > 0);
1253         assert(tgt_len > 0);
1254
1255         mat = edge->costs;
1256         assert(mat);
1257
1258         for (src_index = 0; src_index < src_len; ++src_index) {
1259                 num elem = mat->entries[src_index * tgt_len + col_index];
1260
1261                 if (elem != 0) {
1262                         if (elem == INF_COSTS && src_vec->entries[src_index].data != INF_COSTS)
1263                                 new_infinity = 1;
1264
1265                         src_vec->entries[src_index].data = pbqp_add(
1266                                         src_vec->entries[src_index].data, elem);
1267                 }
1268         }
1269
1270         if (new_infinity) {
1271                 unsigned edge_index;
1272                 unsigned edge_len = pbqp_node_get_degree(src_node);
1273
1274                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1275                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
1276
1277                         if (edge_candidate != edge) {
1278                                 insert_into_edge_bucket(edge_candidate);
1279                         }
1280                 }
1281         }
1282
1283         delete_edge(edge);
1284 }
1285
1286 static void select_row(pbqp_edge *edge, unsigned row_index)
1287 {
1288         pbqp_matrix    *mat;
1289         pbqp_node      *src_node;
1290         pbqp_node      *tgt_node;
1291         vector         *tgt_vec;
1292         unsigned        tgt_len;
1293         unsigned        tgt_index;
1294         unsigned        new_infinity = 0;
1295
1296         assert(edge);
1297
1298         src_node = edge->src;
1299         tgt_node = edge->tgt;
1300         assert(tgt_node);
1301
1302         tgt_vec = tgt_node->costs;
1303         assert(tgt_vec);
1304
1305         tgt_len = tgt_vec->len;
1306         assert(tgt_len > 0);
1307
1308         mat = edge->costs;
1309         assert(mat);
1310
1311         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
1312                 num elem = mat->entries[row_index * tgt_len + tgt_index];
1313
1314                 if (elem != 0) {
1315                         if (elem == INF_COSTS && tgt_vec->entries[tgt_index].data != INF_COSTS)
1316                                 new_infinity = 1;
1317
1318                         tgt_vec->entries[tgt_index].data = pbqp_add(
1319                                         tgt_vec->entries[tgt_index].data, elem);
1320                 }
1321         }
1322
1323         if (new_infinity) {
1324                 unsigned edge_index;
1325                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
1326
1327                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1328                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
1329
1330                         if (edge_candidate != edge) {
1331                                 insert_into_edge_bucket(edge_candidate);
1332                         }
1333                 }
1334         }
1335
1336         delete_edge(edge);
1337 }
1338
1339 void select_alternative(pbqp_node *node, unsigned selected_index)
1340 {
1341         unsigned  edge_index;
1342         unsigned  node_index;
1343         unsigned  node_len;
1344         vector   *node_vec;
1345         unsigned  max_degree = pbqp_node_get_degree(node);
1346
1347         assert(node);
1348         node->solution = selected_index;
1349         node_vec = node->costs;
1350         node_len = node_vec->len;
1351         assert(selected_index < node_len);
1352
1353         /* Set all other costs to infinity. */
1354         for (node_index = 0; node_index < node_len; ++node_index) {
1355                 if (node_index != selected_index) {
1356                         node_vec->entries[node_index].data = INF_COSTS;
1357                 }
1358         }
1359
1360         /* Select corresponding row/column for incident edges. */
1361         for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1362                 pbqp_edge *edge = node->edges[edge_index];
1363
1364                 if (edge->src == node)
1365                         select_row(edge, selected_index);
1366                 else
1367                         select_column(edge, selected_index);
1368         }
1369 }
1370
1371 pbqp_node *get_node_with_max_degree(void)
1372 {
1373         pbqp_node  **bucket       = node_buckets[3];
1374         unsigned     bucket_len   = node_bucket_get_length(bucket);
1375         unsigned     bucket_index;
1376         unsigned     max_degree   = 0;
1377         pbqp_node   *result       = NULL;
1378
1379         for (bucket_index = 0; bucket_index < bucket_len; ++bucket_index) {
1380                 pbqp_node *candidate = bucket[bucket_index];
1381                 unsigned   degree    = pbqp_node_get_degree(candidate);
1382
1383                 if (degree > max_degree) {
1384                         result = candidate;
1385                         max_degree = degree;
1386                 }
1387         }
1388
1389         return result;
1390 }
1391
1392 unsigned get_local_minimal_alternative(pbqp *pbqp, pbqp_node *node)
1393 {
1394         pbqp_edge   *edge;
1395         vector      *node_vec;
1396         vector      *vec;
1397         pbqp_matrix *mat;
1398         unsigned     edge_index;
1399         unsigned     max_degree;
1400         unsigned     node_index;
1401         unsigned     node_len;
1402         unsigned     min_index    = 0;
1403         num          min          = INF_COSTS;
1404         int          is_src;
1405
1406         assert(pbqp);
1407         assert(node);
1408         node_vec   = node->costs;
1409         node_len   = node_vec->len;
1410         max_degree = pbqp_node_get_degree(node);
1411
1412         for (node_index = 0; node_index < node_len; ++node_index) {
1413                 num value = node_vec->entries[node_index].data;
1414
1415                 for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1416                         edge   = node->edges[edge_index];
1417                         mat    = edge->costs;
1418                         is_src = edge->src == node;
1419
1420                         if (is_src) {
1421                                 vec = vector_copy(pbqp, edge->tgt->costs);
1422                                 vector_add_matrix_row(vec, mat, node_index);
1423                         } else {
1424                                 vec = vector_copy(pbqp, edge->src->costs);
1425                                 vector_add_matrix_col(vec, mat, node_index);
1426                         }
1427
1428                         value = pbqp_add(value, vector_get_min(vec));
1429
1430                         obstack_free(&pbqp->obstack, vec);
1431                 }
1432
1433                 if (value < min) {
1434                         min = value;
1435                         min_index = node_index;
1436                 }
1437         }
1438
1439         return min_index;
1440 }
1441
1442 int node_is_reduced(pbqp_node *node)
1443 {
1444         if (!reduced_bucket) return 0;
1445
1446         if (pbqp_node_get_degree(node) == 0) return 1;
1447
1448         return node_bucket_contains(reduced_bucket, node);
1449 }