Adapt to coding conventions.
[libfirm] / optimal.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Optimal reductions and helper functions.
23  * @date    28.12.2009
24  * @author  Sebastian Buchwald
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "adt/array.h"
30 #include "assert.h"
31 #include "error.h"
32
33 #include "bucket.h"
34 #if     KAPS_DUMP
35 #include "html_dumper.h"
36 #endif
37 #include "kaps.h"
38 #include "matrix.h"
39 #include "optimal.h"
40 #include "pbqp_edge.h"
41 #include "pbqp_edge_t.h"
42 #include "pbqp_node.h"
43 #include "pbqp_node_t.h"
44 #include "vector.h"
45
46 #include "plist.h"
47 #include "timing.h"
48
49 pbqp_edge **edge_bucket;
50 pbqp_edge **rm_bucket;
51 pbqp_node **node_buckets[4];
52 pbqp_node **reduced_bucket = NULL;
53 pbqp_node  *merged_node = NULL;
54 static int  buckets_filled = 0;
55
56 static void insert_into_edge_bucket(pbqp_edge *edge)
57 {
58         if (edge_bucket_contains(edge_bucket, edge)) {
59                 /* Edge is already inserted. */
60                 return;
61         }
62
63         edge_bucket_insert(&edge_bucket, edge);
64 }
65
66 static void insert_into_rm_bucket(pbqp_edge *edge)
67 {
68         if (edge_bucket_contains(rm_bucket, edge)) {
69                 /* Edge is already inserted. */
70                 return;
71         }
72
73         edge_bucket_insert(&rm_bucket, edge);
74 }
75
76 static void init_buckets(void)
77 {
78         int i;
79
80         edge_bucket_init(&edge_bucket);
81         edge_bucket_init(&rm_bucket);
82         node_bucket_init(&reduced_bucket);
83
84         for (i = 0; i < 4; ++i) {
85                 node_bucket_init(&node_buckets[i]);
86         }
87 }
88
89 void free_buckets(void)
90 {
91         int i;
92
93         for (i = 0; i < 4; ++i) {
94                 node_bucket_free(&node_buckets[i]);
95         }
96
97         edge_bucket_free(&edge_bucket);
98         edge_bucket_free(&rm_bucket);
99         node_bucket_free(&reduced_bucket);
100
101         buckets_filled = 0;
102 }
103
104 void fill_node_buckets(pbqp *pbqp)
105 {
106         unsigned node_index;
107         unsigned node_len;
108
109         assert(pbqp);
110         node_len = pbqp->num_nodes;
111
112         #if KAPS_TIMING
113                 ir_timer_t *t_fill_buckets = ir_timer_new();
114                 ir_timer_start(t_fill_buckets);
115         #endif
116
117         for (node_index = 0; node_index < node_len; ++node_index) {
118                 unsigned   degree;
119                 pbqp_node *node = get_node(pbqp, node_index);
120
121                 if (!node) continue;
122
123                 degree = pbqp_node_get_degree(node);
124
125                 /* We have only one bucket for nodes with arity >= 3. */
126                 if (degree > 3) {
127                         degree = 3;
128                 }
129
130                 node_bucket_insert(&node_buckets[degree], node);
131         }
132
133         buckets_filled = 1;
134
135         #if KAPS_TIMING
136                 ir_timer_stop(t_fill_buckets);
137                 printf("PBQP Fill Nodes into buckets: %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_fill_buckets) / 1000.0);
138         #endif
139 }
140
141 static void normalize_towards_source(pbqp_edge *edge)
142 {
143         pbqp_matrix    *mat;
144         pbqp_node      *src_node;
145         pbqp_node      *tgt_node;
146         vector         *src_vec;
147         vector         *tgt_vec;
148         unsigned        src_len;
149         unsigned        tgt_len;
150         unsigned        src_index;
151         unsigned        new_infinity = 0;
152
153         assert(edge);
154
155         src_node = edge->src;
156         tgt_node = edge->tgt;
157         assert(src_node);
158         assert(tgt_node);
159
160         src_vec = src_node->costs;
161         tgt_vec = tgt_node->costs;
162         assert(src_vec);
163         assert(tgt_vec);
164
165         src_len = src_vec->len;
166         tgt_len = tgt_vec->len;
167         assert(src_len > 0);
168         assert(tgt_len > 0);
169
170         mat = edge->costs;
171         assert(mat);
172
173         /* Normalize towards source node. */
174         for (src_index = 0; src_index < src_len; ++src_index) {
175                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
176
177                 if (min != 0) {
178                         if (src_vec->entries[src_index].data == INF_COSTS) {
179                                 pbqp_matrix_set_row_value(mat, src_index, 0);
180                                 continue;
181                         }
182
183                         pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
184                         src_vec->entries[src_index].data = pbqp_add(
185                                         src_vec->entries[src_index].data, min);
186
187                         if (min == INF_COSTS) {
188                                 new_infinity = 1;
189                         }
190                 }
191         }
192
193         if (new_infinity) {
194                 unsigned edge_index;
195                 unsigned edge_len = pbqp_node_get_degree(src_node);
196
197                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
198                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
199
200                         if (edge_candidate != edge) {
201                                 insert_into_edge_bucket(edge_candidate);
202                         }
203                 }
204         }
205 }
206
207 static void normalize_towards_target(pbqp_edge *edge)
208 {
209         pbqp_matrix    *mat;
210         pbqp_node      *src_node;
211         pbqp_node      *tgt_node;
212         vector         *src_vec;
213         vector         *tgt_vec;
214         unsigned        src_len;
215         unsigned        tgt_len;
216         unsigned        tgt_index;
217         unsigned        new_infinity = 0;
218
219         assert(edge);
220
221         src_node = edge->src;
222         tgt_node = edge->tgt;
223         assert(src_node);
224         assert(tgt_node);
225
226         src_vec = src_node->costs;
227         tgt_vec = tgt_node->costs;
228         assert(src_vec);
229         assert(tgt_vec);
230
231         src_len = src_vec->len;
232         tgt_len = tgt_vec->len;
233         assert(src_len > 0);
234         assert(tgt_len > 0);
235
236         mat = edge->costs;
237         assert(mat);
238
239         /* Normalize towards target node. */
240         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
241                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
242
243                 if (min != 0) {
244                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
245                                 pbqp_matrix_set_col_value(mat, tgt_index, 0);
246                                 continue;
247                         }
248
249                         pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
250                         tgt_vec->entries[tgt_index].data = pbqp_add(
251                                         tgt_vec->entries[tgt_index].data, min);
252
253                         if (min == INF_COSTS) {
254                                 new_infinity = 1;
255                         }
256                 }
257         }
258
259         if (new_infinity) {
260                 unsigned edge_index;
261                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
262
263                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
264                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
265
266                         if (edge_candidate != edge) {
267                                 insert_into_edge_bucket(edge_candidate);
268                         }
269                 }
270         }
271 }
272
273 /**
274  * Tries to apply RM for the source node of the given edge.
275  *
276  * Checks whether the source node of edge can be merged into the target node of
277  * edge, and performs the merge, if possible.
278  */
279 static void merge_source_into_target(pbqp *pbqp, pbqp_edge *edge)
280 {
281         pbqp_matrix    *mat;
282         pbqp_node      *src_node;
283         pbqp_node      *tgt_node;
284         vector         *src_vec;
285         vector         *tgt_vec;
286         unsigned       *mapping;
287         unsigned        src_len;
288         unsigned        tgt_len;
289         unsigned        src_index;
290         unsigned        tgt_index;
291         unsigned        edge_index;
292         unsigned        edge_len;
293
294         assert(pbqp);
295         assert(edge);
296
297         src_node = edge->src;
298         tgt_node = edge->tgt;
299         assert(src_node);
300         assert(tgt_node);
301
302         src_vec = src_node->costs;
303         tgt_vec = tgt_node->costs;
304         assert(src_vec);
305         assert(tgt_vec);
306
307         src_len = src_vec->len;
308         tgt_len = tgt_vec->len;
309
310         /* Matrizes are normalized. */
311         assert(src_len > 1);
312         assert(tgt_len > 1);
313
314         mat = edge->costs;
315         assert(mat);
316
317         mapping = NEW_ARR_F(unsigned, tgt_len);
318
319         /* Check that each column has at most one zero entry. */
320         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
321                 unsigned onlyOneZero = 0;
322
323                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
324                         continue;
325
326                 for (src_index = 0; src_index < src_len; ++src_index) {
327                         if (src_vec->entries[src_index].data == INF_COSTS)
328                                 continue;
329
330                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
331                                 continue;
332
333                         /* Matrix entry is finite. */
334                         if (onlyOneZero) {
335                                 DEL_ARR_F(mapping);
336                                 return;
337                         }
338
339                         onlyOneZero = 1;
340                         mapping[tgt_index] = src_index;
341                 }
342         }
343
344         /* We know that we can merge the source node into the target node. */
345         edge_len = pbqp_node_get_degree(src_node);
346
347 #if KAPS_STATISTIC
348         pbqp->num_rm++;
349 #endif
350
351         /* Reconnect the source's edges with the target node. */
352         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
353                 pbqp_edge   *old_edge = src_node->edges[edge_index];
354                 pbqp_edge   *new_edge;
355                 pbqp_matrix *old_matrix;
356                 pbqp_matrix *new_matrix;
357                 pbqp_node   *other_node;
358                 vector      *other_vec;
359                 unsigned     other_len;
360                 unsigned     other_index;
361                 unsigned     tgt_index;
362
363                 assert(old_edge);
364
365                 if (old_edge == edge)
366                         continue;
367
368                 old_matrix = old_edge->costs;
369                 assert(old_matrix);
370
371                 if (old_edge->tgt == src_node) {
372                         other_node = old_edge->src;
373                         other_len  = old_matrix->rows;
374                 }
375                 else {
376                         other_node = old_edge->tgt;
377                         other_len = old_matrix->cols;
378                 }
379                 assert(other_node);
380                 other_vec = other_node->costs;
381
382                 new_matrix = pbqp_matrix_alloc(pbqp, tgt_len, other_len);
383
384                 /* Source node selects the column of the old_matrix. */
385                 if (old_edge->tgt == src_node) {
386                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
387                                 unsigned src_index = mapping[tgt_index];
388
389                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
390                                         continue;
391
392                                 for (other_index = 0; other_index < other_len; ++other_index) {
393                                         if (other_vec->entries[other_index].data == INF_COSTS)
394                                                 continue;
395
396                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[other_index*src_len+src_index];
397                                 }
398                         }
399                 }
400                 /* Source node selects the row of the old_matrix. */
401                 else {
402                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
403                                 unsigned src_index = mapping[tgt_index];
404
405                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
406                                         continue;
407
408                                 for (other_index = 0; other_index < other_len; ++other_index) {
409                                         if (other_vec->entries[other_index].data == INF_COSTS)
410                                                 continue;
411
412                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[src_index*other_len+other_index];
413                                 }
414                         }
415                 }
416
417                 add_edge_costs(pbqp, tgt_node->index, other_node->index, new_matrix);
418
419                 delete_edge(old_edge);
420
421                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
422                 insert_into_rm_bucket(new_edge);
423         }
424
425 #if KAPS_STATISTIC
426         pbqp->num_r1--;
427 #endif
428 }
429
430 /**
431  * Tries to apply RM for the target node of the given edge.
432  *
433  * Checks whether the target node of edge can be merged into the source node of
434  * edge, and performs the merge, if possible.
435  */
436 static void merge_target_into_source(pbqp *pbqp, pbqp_edge *edge)
437 {
438         pbqp_matrix    *mat;
439         pbqp_node      *src_node;
440         pbqp_node      *tgt_node;
441         vector         *src_vec;
442         vector         *tgt_vec;
443         unsigned       *mapping;
444         unsigned        src_len;
445         unsigned        tgt_len;
446         unsigned        src_index;
447         unsigned        tgt_index;
448         unsigned        edge_index;
449         unsigned        edge_len;
450
451         assert(pbqp);
452         assert(edge);
453
454         src_node = edge->src;
455         tgt_node = edge->tgt;
456         assert(src_node);
457         assert(tgt_node);
458
459         src_vec = src_node->costs;
460         tgt_vec = tgt_node->costs;
461         assert(src_vec);
462         assert(tgt_vec);
463
464         src_len = src_vec->len;
465         tgt_len = tgt_vec->len;
466
467         /* Matrizes are normalized. */
468         assert(src_len > 1);
469         assert(tgt_len > 1);
470
471         mat = edge->costs;
472         assert(mat);
473
474         mapping = NEW_ARR_F(unsigned, src_len);
475
476         /* Check that each row has at most one zero entry. */
477         for (src_index = 0; src_index < src_len; ++src_index) {
478                 unsigned onlyOneZero = 0;
479
480                 if (src_vec->entries[src_index].data == INF_COSTS)
481                         continue;
482
483                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
484                         if (tgt_vec->entries[tgt_index].data == INF_COSTS)
485                                 continue;
486
487                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
488                                 continue;
489
490                         /* Matrix entry is finite. */
491                         if (onlyOneZero) {
492                                 DEL_ARR_F(mapping);
493                                 return;
494                         }
495
496                         onlyOneZero = 1;
497                         mapping[src_index] = tgt_index;
498                 }
499         }
500
501         /* We know that we can merge the target node into the source node. */
502         edge_len = pbqp_node_get_degree(tgt_node);
503
504 #if KAPS_STATISTIC
505         pbqp->num_rm++;
506 #endif
507
508         /* Reconnect the target's edges with the source node. */
509         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
510                 pbqp_edge   *old_edge = tgt_node->edges[edge_index];
511                 pbqp_edge   *new_edge;
512                 pbqp_matrix *old_matrix;
513                 pbqp_matrix *new_matrix;
514                 pbqp_node   *other_node;
515                 vector      *other_vec;
516                 unsigned     other_len;
517                 unsigned     other_index;
518                 unsigned     src_index;
519
520                 assert(old_edge);
521
522                 if (old_edge == edge)
523                         continue;
524
525                 old_matrix = old_edge->costs;
526                 assert(old_matrix);
527
528                 if (old_edge->tgt == tgt_node) {
529                         other_node = old_edge->src;
530                         other_len  = old_matrix->rows;
531                 }
532                 else {
533                         other_node = old_edge->tgt;
534                         other_len = old_matrix->cols;
535                 }
536                 assert(other_node);
537                 other_vec = other_node->costs;
538
539                 new_matrix = pbqp_matrix_alloc(pbqp, src_len, other_len);
540
541                 /* Target node selects the column of the old_matrix. */
542                 if (old_edge->tgt == tgt_node) {
543                         for (src_index = 0; src_index < src_len; ++src_index) {
544                                 unsigned tgt_index = mapping[src_index];
545
546                                 if (src_vec->entries[src_index].data == INF_COSTS)
547                                         continue;
548
549                                 for (other_index = 0; other_index < other_len; ++other_index) {
550                                         if (other_vec->entries[other_index].data == INF_COSTS)
551                                                 continue;
552
553                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[other_index*tgt_len+tgt_index];
554                                 }
555                         }
556                 }
557                 /* Source node selects the row of the old_matrix. */
558                 else {
559                         for (src_index = 0; src_index < src_len; ++src_index) {
560                                 unsigned tgt_index = mapping[src_index];
561
562                                 if (src_vec->entries[src_index].data == INF_COSTS)
563                                         continue;
564
565                                 for (other_index = 0; other_index < other_len; ++other_index) {
566                                         if (other_vec->entries[other_index].data == INF_COSTS)
567                                                 continue;
568
569                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[tgt_index*other_len+other_index];
570                                 }
571                         }
572                 }
573
574                 add_edge_costs(pbqp, src_node->index, other_node->index, new_matrix);
575
576                 delete_edge(old_edge);
577
578                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
579                 insert_into_rm_bucket(new_edge);
580         }
581
582 #if KAPS_STATISTIC
583         pbqp->num_r1--;
584 #endif
585 }
586
587 /**
588  * Merge neighbors into the given node.
589  */
590 void apply_RM(pbqp *pbqp, pbqp_node *node)
591 {
592         pbqp_edge **edges;
593         unsigned    edge_index;
594         unsigned    edge_len;
595
596         assert(node);
597         assert(pbqp);
598
599         edges    = node->edges;
600         edge_len = pbqp_node_get_degree(node);
601
602         /* Check all incident edges. */
603         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
604                 pbqp_edge *edge = edges[edge_index];
605
606                 insert_into_rm_bucket(edge);
607         }
608
609         /* ALAP: Merge neighbors into given node. */
610         while(edge_bucket_get_length(rm_bucket) > 0) {
611                 pbqp_edge *edge = edge_bucket_pop(&rm_bucket);
612                 assert(edge);
613
614                 if (edge->src == node)
615                         merge_target_into_source(pbqp, edge);
616                 else
617                         merge_source_into_target(pbqp, edge);
618         }
619
620         merged_node = node;
621 }
622
623 void reorder_node(pbqp_node *node)
624 {
625         unsigned    degree     = pbqp_node_get_degree(node);
626         /* Assume node lost one incident edge. */
627         unsigned    old_degree = degree + 1;
628
629         if (!buckets_filled) return;
630
631         /* Same bucket as before */
632         if (degree > 2) return;
633
634         if (!node_bucket_contains(node_buckets[old_degree], node)) {
635                 /* Old arity is new arity, so we have nothing to do. */
636                 assert(node_bucket_contains(node_buckets[degree], node));
637                 return;
638         }
639
640         /* Delete node from old bucket... */
641         node_bucket_remove(&node_buckets[old_degree], node);
642
643         /* ..and add to new one. */
644         node_bucket_insert(&node_buckets[degree], node);
645 }
646
647 void simplify_edge(pbqp *pbqp, pbqp_edge *edge)
648 {
649         pbqp_matrix    *mat;
650         pbqp_node      *src_node;
651         pbqp_node      *tgt_node;
652         vector         *src_vec;
653         vector         *tgt_vec;
654         int             src_len;
655         int             tgt_len;
656
657         assert(pbqp);
658         assert(edge);
659
660         (void) pbqp;
661
662         src_node = edge->src;
663         tgt_node = edge->tgt;
664         assert(src_node);
665         assert(tgt_node);
666
667         /* If edge are already deleted, we have nothing to do. */
668         if (is_deleted(edge))
669                 return;
670
671 #if     KAPS_DUMP
672         if (pbqp->dump_file) {
673                 char txt[100];
674                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
675                 dump_section(pbqp->dump_file, 3, txt);
676         }
677 #endif
678
679         src_vec = src_node->costs;
680         tgt_vec = tgt_node->costs;
681         assert(src_vec);
682         assert(tgt_vec);
683
684         src_len = src_vec->len;
685         tgt_len = tgt_vec->len;
686         assert(src_len > 0);
687         assert(tgt_len > 0);
688
689         mat = edge->costs;
690         assert(mat);
691
692 #if     KAPS_DUMP
693         if (pbqp->dump_file) {
694                 fputs("Input:<br>\n", pbqp->dump_file);
695                 dump_simplifyedge(pbqp, edge);
696         }
697 #endif
698
699         normalize_towards_source(edge);
700         normalize_towards_target(edge);
701
702 #if     KAPS_DUMP
703         if (pbqp->dump_file) {
704                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
705                 dump_simplifyedge(pbqp, edge);
706         }
707 #endif
708
709         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
710 #if     KAPS_DUMP
711                 if (pbqp->dump_file) {
712                         fputs("edge has been eliminated<br>\n", pbqp->dump_file);
713                 }
714 #endif
715
716 #if KAPS_STATISTIC
717                 pbqp->num_edges++;
718 #endif
719
720                 delete_edge(edge);
721         }
722 }
723
724 void initial_simplify_edges(pbqp *pbqp)
725 {
726         unsigned node_index;
727         unsigned node_len;
728
729         assert(pbqp);
730
731         #if KAPS_TIMING
732                 ir_timer_t *t_int_simpl = ir_timer_new();
733                 ir_timer_start(t_int_simpl);
734         #endif
735
736 #if     KAPS_DUMP
737         if (pbqp->dump_file) {
738                 pbqp_dump_input(pbqp);
739                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
740         }
741 #endif
742
743         node_len = pbqp->num_nodes;
744
745         init_buckets();
746
747         /* First simplify all edges. */
748         for (node_index = 0; node_index < node_len; ++node_index) {
749                 unsigned    edge_index;
750                 pbqp_node  *node = get_node(pbqp, node_index);
751                 pbqp_edge **edges;
752                 unsigned    edge_len;
753
754                 if (!node) continue;
755
756                 edges = node->edges;
757                 edge_len = pbqp_node_get_degree(node);
758
759                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
760                         pbqp_edge *edge = edges[edge_index];
761
762                         /* Simplify only once per edge. */
763                         if (node != edge->src) continue;
764
765                         simplify_edge(pbqp, edge);
766                 }
767         }
768
769         #if KAPS_TIMING
770                 ir_timer_stop(t_int_simpl);
771                 printf("PBQP Initial simplify edges:  %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_int_simpl) / 1000.0);
772         #endif
773 }
774
775 num determine_solution(pbqp *pbqp)
776 {
777         unsigned node_index;
778         unsigned node_len;
779         num      solution   = 0;
780
781         #if KAPS_TIMING
782                 ir_timer_t *t_det_solution = ir_timer_new();
783                 ir_timer_reset_and_start(t_det_solution);
784         #endif
785
786 #if     KAPS_DUMP
787         FILE     *file;
788 #endif
789
790         assert(pbqp);
791
792         (void) pbqp;
793
794 #if     KAPS_DUMP
795         file = pbqp->dump_file;
796
797         if (file) {
798                 dump_section(file, 1, "4. Determine Solution/Minimum");
799                 dump_section(file, 2, "4.1. Trivial Solution");
800         }
801 #endif
802
803         /* Solve trivial nodes and calculate solution. */
804         node_len = node_bucket_get_length(node_buckets[0]);
805
806 #if KAPS_STATISTIC
807         pbqp->num_r0 = node_len;
808 #endif
809
810         for (node_index = 0; node_index < node_len; ++node_index) {
811                 pbqp_node *node = node_buckets[0][node_index];
812                 assert(node);
813
814                 node->solution = vector_get_min_index(node->costs);
815                 solution       = pbqp_add(solution,
816                                 node->costs->entries[node->solution].data);
817
818 #if     KAPS_DUMP
819                 if (file) {
820                         fprintf(file, "node n%d is set to %d<br>\n", node->index, node->solution);
821                         dump_node(file, node);
822                 }
823 #endif
824         }
825
826 #if     KAPS_DUMP
827         if (file) {
828                 dump_section(file, 2, "Minimum");
829 #if KAPS_USE_UNSIGNED
830                 fprintf(file, "Minimum is equal to %u.", solution);
831 #else
832                 fprintf(file, "Minimum is equal to %lld.", solution);
833 #endif
834         }
835 #endif
836
837         #if KAPS_TIMING
838                 ir_timer_stop(t_det_solution);
839                 printf("PBQP Determine Solution:      %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_det_solution) / 1000.0);
840         #endif
841
842         return solution;
843 }
844
845 static void back_propagate_RI(pbqp *pbqp, pbqp_node *node)
846 {
847         pbqp_edge   *edge;
848         pbqp_node   *other;
849         pbqp_matrix *mat;
850         vector      *vec;
851         int          is_src;
852
853         assert(pbqp);
854         assert(node);
855
856         (void) pbqp;
857
858         edge = node->edges[0];
859         mat = edge->costs;
860         is_src = edge->src == node;
861         vec = node->costs;
862
863         if (is_src) {
864                 other = edge->tgt;
865                 assert(other);
866
867                 node->solution = pbqp_matrix_get_col_min_index(mat, other->solution, vec);
868         } else {
869                 other = edge->src;
870                 assert(other);
871
872                 node->solution = pbqp_matrix_get_row_min_index(mat, other->solution, vec);
873         }
874
875 #if     KAPS_DUMP
876         if (pbqp->dump_file) {
877                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
878         }
879 #endif
880 }
881
882 static void back_propagate_RII(pbqp *pbqp, pbqp_node *node)
883 {
884         pbqp_edge   *src_edge   = node->edges[0];
885         pbqp_edge   *tgt_edge   = node->edges[1];
886         int          src_is_src = src_edge->src == node;
887         int          tgt_is_src = tgt_edge->src == node;
888         pbqp_matrix *src_mat;
889         pbqp_matrix *tgt_mat;
890         pbqp_node   *src_node;
891         pbqp_node   *tgt_node;
892         vector      *vec;
893         vector      *node_vec;
894         unsigned     col_index;
895         unsigned     row_index;
896
897         assert(pbqp);
898
899         if (src_is_src) {
900                 src_node = src_edge->tgt;
901         } else {
902                 src_node = src_edge->src;
903         }
904
905         if (tgt_is_src) {
906                 tgt_node = tgt_edge->tgt;
907         } else {
908                 tgt_node = tgt_edge->src;
909         }
910
911         /* Swap nodes if necessary. */
912         if (tgt_node->index < src_node->index) {
913                 pbqp_node *tmp_node;
914                 pbqp_edge *tmp_edge;
915
916                 tmp_node = src_node;
917                 src_node = tgt_node;
918                 tgt_node = tmp_node;
919
920                 tmp_edge = src_edge;
921                 src_edge = tgt_edge;
922                 tgt_edge = tmp_edge;
923
924                 src_is_src = src_edge->src == node;
925                 tgt_is_src = tgt_edge->src == node;
926         }
927
928         src_mat = src_edge->costs;
929         tgt_mat = tgt_edge->costs;
930
931         node_vec = node->costs;
932
933         row_index = src_node->solution;
934         col_index = tgt_node->solution;
935
936         vec = vector_copy(pbqp, node_vec);
937
938         if (src_is_src) {
939                 vector_add_matrix_col(vec, src_mat, row_index);
940         } else {
941                 vector_add_matrix_row(vec, src_mat, row_index);
942         }
943
944         if (tgt_is_src) {
945                 vector_add_matrix_col(vec, tgt_mat, col_index);
946         } else {
947                 vector_add_matrix_row(vec, tgt_mat, col_index);
948         }
949
950         node->solution = vector_get_min_index(vec);
951
952 #if     KAPS_DUMP
953         if (pbqp->dump_file) {
954                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
955         }
956 #endif
957
958         obstack_free(&pbqp->obstack, vec);
959 }
960
961 void back_propagate(pbqp *pbqp)
962 {
963         unsigned node_index;
964         unsigned node_len   = node_bucket_get_length(reduced_bucket);
965
966         assert(pbqp);
967
968 #if     KAPS_DUMP
969         if (pbqp->dump_file) {
970                 dump_section(pbqp->dump_file, 2, "Back Propagation");
971         }
972 #endif
973
974         for (node_index = node_len; node_index > 0; --node_index) {
975                 pbqp_node *node = reduced_bucket[node_index - 1];
976
977                 switch (pbqp_node_get_degree(node)) {
978                         case 1:
979                                 back_propagate_RI(pbqp, node);
980                                 break;
981                         case 2:
982                                 back_propagate_RII(pbqp, node);
983                                 break;
984                         default:
985                                 panic("Only nodes with degree one or two should be in this bucket");
986                                 break;
987                 }
988         }
989 }
990
991 void apply_edge(pbqp *pbqp)
992 {
993         pbqp_edge *edge = edge_bucket_pop(&edge_bucket);
994
995         simplify_edge(pbqp, edge);
996 }
997
998 void apply_RI(pbqp *pbqp)
999 {
1000         pbqp_node   *node       = node_bucket_pop(&node_buckets[1]);
1001         pbqp_edge   *edge       = node->edges[0];
1002         pbqp_matrix *mat        = edge->costs;
1003         int          is_src     = edge->src == node;
1004         pbqp_node   *other_node;
1005
1006         (void ) pbqp;
1007         assert(pbqp_node_get_degree(node) == 1);
1008
1009         if (is_src) {
1010                 other_node = edge->tgt;
1011         } else {
1012                 other_node = edge->src;
1013         }
1014
1015 #if     KAPS_DUMP
1016         if (pbqp->dump_file) {
1017                 char     txt[100];
1018                 sprintf(txt, "RI-Reduction of Node n%d", node->index);
1019                 dump_section(pbqp->dump_file, 2, txt);
1020                 pbqp_dump_graph(pbqp);
1021                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1022                 dump_node(pbqp->dump_file, node);
1023                 dump_node(pbqp->dump_file, other_node);
1024                 dump_edge(pbqp->dump_file, edge);
1025         }
1026 #endif
1027
1028         if (is_src) {
1029                 pbqp_matrix_add_to_all_cols(mat, node->costs);
1030                 normalize_towards_target(edge);
1031         } else {
1032                 pbqp_matrix_add_to_all_rows(mat, node->costs);
1033                 normalize_towards_source(edge);
1034         }
1035         disconnect_edge(other_node, edge);
1036
1037 #if     KAPS_DUMP
1038         if (pbqp->dump_file) {
1039                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1040                 dump_node(pbqp->dump_file, other_node);
1041         }
1042 #endif
1043
1044         reorder_node(other_node);
1045
1046 #if KAPS_STATISTIC
1047         pbqp->num_r1++;
1048 #endif
1049
1050         /* Add node to back propagation list. */
1051         node_bucket_insert(&reduced_bucket, node);
1052 }
1053
1054 void apply_RII(pbqp *pbqp)
1055 {
1056         pbqp_node   *node       = node_bucket_pop(&node_buckets[2]);
1057         pbqp_edge   *src_edge   = node->edges[0];
1058         pbqp_edge   *tgt_edge   = node->edges[1];
1059         int          src_is_src = src_edge->src == node;
1060         int          tgt_is_src = tgt_edge->src == node;
1061         pbqp_matrix *src_mat;
1062         pbqp_matrix *tgt_mat;
1063         pbqp_node   *src_node;
1064         pbqp_node   *tgt_node;
1065         pbqp_matrix *mat;
1066         vector      *vec;
1067         vector      *node_vec;
1068         vector      *src_vec;
1069         vector      *tgt_vec;
1070         unsigned     col_index;
1071         unsigned     col_len;
1072         unsigned     row_index;
1073         unsigned     row_len;
1074         unsigned     node_len;
1075
1076         assert(pbqp);
1077         assert(pbqp_node_get_degree(node) == 2);
1078
1079         if (src_is_src) {
1080                 src_node = src_edge->tgt;
1081         } else {
1082                 src_node = src_edge->src;
1083         }
1084
1085         if (tgt_is_src) {
1086                 tgt_node = tgt_edge->tgt;
1087         } else {
1088                 tgt_node = tgt_edge->src;
1089         }
1090
1091         /* Swap nodes if necessary. */
1092         if (tgt_node->index < src_node->index) {
1093                 pbqp_node *tmp_node;
1094                 pbqp_edge *tmp_edge;
1095
1096                 tmp_node = src_node;
1097                 src_node = tgt_node;
1098                 tgt_node = tmp_node;
1099
1100                 tmp_edge = src_edge;
1101                 src_edge = tgt_edge;
1102                 tgt_edge = tmp_edge;
1103
1104                 src_is_src = src_edge->src == node;
1105                 tgt_is_src = tgt_edge->src == node;
1106         }
1107
1108 #if     KAPS_DUMP
1109         if (pbqp->dump_file) {
1110                 char     txt[100];
1111                 sprintf(txt, "RII-Reduction of Node n%d", node->index);
1112                 dump_section(pbqp->dump_file, 2, txt);
1113                 pbqp_dump_graph(pbqp);
1114                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1115                 dump_node(pbqp->dump_file, src_node);
1116                 dump_edge(pbqp->dump_file, src_edge);
1117                 dump_node(pbqp->dump_file, node);
1118                 dump_edge(pbqp->dump_file, tgt_edge);
1119                 dump_node(pbqp->dump_file, tgt_node);
1120         }
1121 #endif
1122
1123         src_mat = src_edge->costs;
1124         tgt_mat = tgt_edge->costs;
1125
1126         src_vec  = src_node->costs;
1127         tgt_vec  = tgt_node->costs;
1128         node_vec = node->costs;
1129
1130         row_len  = src_vec->len;
1131         col_len  = tgt_vec->len;
1132         node_len = node_vec->len;
1133
1134         mat = pbqp_matrix_alloc(pbqp, row_len, col_len);
1135
1136         for (row_index = 0; row_index < row_len; ++row_index) {
1137                 for (col_index = 0; col_index < col_len; ++col_index) {
1138                         vec = vector_copy(pbqp, node_vec);
1139
1140                         if (src_is_src) {
1141                                 vector_add_matrix_col(vec, src_mat, row_index);
1142                         } else {
1143                                 vector_add_matrix_row(vec, src_mat, row_index);
1144                         }
1145
1146                         if (tgt_is_src) {
1147                                 vector_add_matrix_col(vec, tgt_mat, col_index);
1148                         } else {
1149                                 vector_add_matrix_row(vec, tgt_mat, col_index);
1150                         }
1151
1152                         mat->entries[row_index * col_len + col_index] = vector_get_min(vec);
1153
1154                         obstack_free(&pbqp->obstack, vec);
1155                 }
1156         }
1157
1158         pbqp_edge *edge = get_edge(pbqp, src_node->index, tgt_node->index);
1159
1160         /* Disconnect node. */
1161         disconnect_edge(src_node, src_edge);
1162         disconnect_edge(tgt_node, tgt_edge);
1163
1164 #if KAPS_STATISTIC
1165         pbqp->num_r2++;
1166 #endif
1167
1168         /* Add node to back propagation list. */
1169         node_bucket_insert(&reduced_bucket, node);
1170
1171         if (edge == NULL) {
1172                 edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat);
1173         } else {
1174                 // matrix
1175                 pbqp_matrix_add(edge->costs, mat);
1176
1177                 /* Free local matrix. */
1178                 obstack_free(&pbqp->obstack, mat);
1179
1180                 reorder_node(src_node);
1181                 reorder_node(tgt_node);
1182         }
1183
1184 #if     KAPS_DUMP
1185         if (pbqp->dump_file) {
1186                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1187                 dump_edge(pbqp->dump_file, edge);
1188         }
1189 #endif
1190
1191         /* Edge has changed so we simplify it. */
1192         simplify_edge(pbqp, edge);
1193 }
1194
1195 static void select_column(pbqp_edge *edge, unsigned col_index)
1196 {
1197         pbqp_matrix    *mat;
1198         pbqp_node      *src_node;
1199         pbqp_node      *tgt_node;
1200         vector         *src_vec;
1201         vector         *tgt_vec;
1202         unsigned        src_len;
1203         unsigned        tgt_len;
1204         unsigned        src_index;
1205         unsigned        new_infinity = 0;
1206
1207         assert(edge);
1208
1209         src_node = edge->src;
1210         tgt_node = edge->tgt;
1211         assert(src_node);
1212         assert(tgt_node);
1213
1214         src_vec = src_node->costs;
1215         tgt_vec = tgt_node->costs;
1216         assert(src_vec);
1217         assert(tgt_vec);
1218
1219         src_len = src_vec->len;
1220         tgt_len = tgt_vec->len;
1221         assert(src_len > 0);
1222         assert(tgt_len > 0);
1223
1224         mat = edge->costs;
1225         assert(mat);
1226
1227         for (src_index = 0; src_index < src_len; ++src_index) {
1228                 num elem = mat->entries[src_index * tgt_len + col_index];
1229
1230                 if (elem != 0) {
1231                         if (elem == INF_COSTS && src_vec->entries[src_index].data != INF_COSTS)
1232                                 new_infinity = 1;
1233
1234                         src_vec->entries[src_index].data = pbqp_add(
1235                                         src_vec->entries[src_index].data, elem);
1236                 }
1237         }
1238
1239         if (new_infinity) {
1240                 unsigned edge_index;
1241                 unsigned edge_len = pbqp_node_get_degree(src_node);
1242
1243                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1244                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
1245
1246                         if (edge_candidate != edge) {
1247                                 insert_into_edge_bucket(edge_candidate);
1248                         }
1249                 }
1250         }
1251
1252         delete_edge(edge);
1253 }
1254
1255 static void select_row(pbqp_edge *edge, unsigned row_index)
1256 {
1257         pbqp_matrix    *mat;
1258         pbqp_node      *src_node;
1259         pbqp_node      *tgt_node;
1260         vector         *tgt_vec;
1261         unsigned        tgt_len;
1262         unsigned        tgt_index;
1263         unsigned        new_infinity = 0;
1264
1265         assert(edge);
1266
1267         src_node = edge->src;
1268         tgt_node = edge->tgt;
1269         assert(tgt_node);
1270
1271         tgt_vec = tgt_node->costs;
1272         assert(tgt_vec);
1273
1274         tgt_len = tgt_vec->len;
1275         assert(tgt_len > 0);
1276
1277         mat = edge->costs;
1278         assert(mat);
1279
1280         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
1281                 num elem = mat->entries[row_index * tgt_len + tgt_index];
1282
1283                 if (elem != 0) {
1284                         if (elem == INF_COSTS && tgt_vec->entries[tgt_index].data != INF_COSTS)
1285                                 new_infinity = 1;
1286
1287                         tgt_vec->entries[tgt_index].data = pbqp_add(
1288                                         tgt_vec->entries[tgt_index].data, elem);
1289                 }
1290         }
1291
1292         if (new_infinity) {
1293                 unsigned edge_index;
1294                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
1295
1296                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1297                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
1298
1299                         if (edge_candidate != edge) {
1300                                 insert_into_edge_bucket(edge_candidate);
1301                         }
1302                 }
1303         }
1304
1305         delete_edge(edge);
1306 }
1307
1308 void select_alternative(pbqp_node *node, unsigned selected_index)
1309 {
1310         unsigned  edge_index;
1311         unsigned  node_index;
1312         unsigned  node_len;
1313         vector   *node_vec;
1314         unsigned  max_degree = pbqp_node_get_degree(node);
1315
1316         assert(node);
1317         node->solution = selected_index;
1318         node_vec = node->costs;
1319         node_len = node_vec->len;
1320         assert(selected_index < node_len);
1321
1322         /* Set all other costs to infinity. */
1323         for (node_index = 0; node_index < node_len; ++node_index) {
1324                 if (node_index != selected_index) {
1325                         node_vec->entries[node_index].data = INF_COSTS;
1326                 }
1327         }
1328
1329         /* Select corresponding row/column for incident edges. */
1330         for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1331                 pbqp_edge *edge = node->edges[edge_index];
1332
1333                 if (edge->src == node)
1334                         select_row(edge, selected_index);
1335                 else
1336                         select_column(edge, selected_index);
1337         }
1338 }
1339
1340 pbqp_node *get_node_with_max_degree(void)
1341 {
1342         pbqp_node  **bucket       = node_buckets[3];
1343         unsigned     bucket_len   = node_bucket_get_length(bucket);
1344         unsigned     bucket_index;
1345         unsigned     max_degree   = 0;
1346         pbqp_node   *result       = NULL;
1347
1348         for (bucket_index = 0; bucket_index < bucket_len; ++bucket_index) {
1349                 pbqp_node *candidate = bucket[bucket_index];
1350                 unsigned   degree    = pbqp_node_get_degree(candidate);
1351
1352                 if (degree > max_degree) {
1353                         result = candidate;
1354                         max_degree = degree;
1355                 }
1356         }
1357
1358         return result;
1359 }
1360
1361 unsigned get_local_minimal_alternative(pbqp *pbqp, pbqp_node *node)
1362 {
1363         pbqp_edge   *edge;
1364         vector      *node_vec;
1365         vector      *vec;
1366         pbqp_matrix *mat;
1367         unsigned     edge_index;
1368         unsigned     max_degree;
1369         unsigned     node_index;
1370         unsigned     node_len;
1371         unsigned     min_index    = 0;
1372         num          min          = INF_COSTS;
1373         int          is_src;
1374
1375         assert(pbqp);
1376         assert(node);
1377         node_vec   = node->costs;
1378         node_len   = node_vec->len;
1379         max_degree = pbqp_node_get_degree(node);
1380
1381         for (node_index = 0; node_index < node_len; ++node_index) {
1382                 num value = node_vec->entries[node_index].data;
1383
1384                 for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1385                         edge   = node->edges[edge_index];
1386                         mat    = edge->costs;
1387                         is_src = edge->src == node;
1388
1389                         if (is_src) {
1390                                 vec = vector_copy(pbqp, edge->tgt->costs);
1391                                 vector_add_matrix_row(vec, mat, node_index);
1392                         } else {
1393                                 vec = vector_copy(pbqp, edge->src->costs);
1394                                 vector_add_matrix_col(vec, mat, node_index);
1395                         }
1396
1397                         value = pbqp_add(value, vector_get_min(vec));
1398
1399                         obstack_free(&pbqp->obstack, vec);
1400                 }
1401
1402                 if (value < min) {
1403                         min = value;
1404                         min_index = node_index;
1405                 }
1406         }
1407
1408         return min_index;
1409 }
1410
1411 int node_is_reduced(pbqp_node *node)
1412 {
1413         if (!reduced_bucket) return 0;
1414
1415         if (pbqp_node_get_degree(node) == 0) return 1;
1416
1417         return node_bucket_contains(reduced_bucket, node);
1418 }