cparser now knows 'unroll-loops'.
[libfirm] / ir / opt / opt_ldst.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Dataflow driven Load/Store optimizations, uses some ideas from
23  *          VanDrunen's LEPRE
24  * @author  Michael Beck
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "irnode_t.h"
30 #include "irflag_t.h"
31 #include "array_t.h"
32 #include "ircons.h"
33 #include "irdom.h"
34 #include "irgmod.h"
35 #include "irgwalk.h"
36 #include "irouts.h"
37 #include "irgraph.h"
38 #include "irgopt.h"
39 #include "iropt.h"
40 #include "iroptimize.h"
41 #include "irnodemap.h"
42 #include "raw_bitset.h"
43 #include "debug.h"
44 #include "error.h"
45 #include "irpass.h"
46
47 /* maximum number of output Proj's */
48 #define MAX_PROJ (pn_Load_max > pn_Store_max ? pn_Load_max : pn_Store_max)
49
50 /**
51  * Mapping an address to an dense ID.
52  */
53 typedef struct address_entry_t {
54         unsigned id;          /**< The ID */
55 } address_entry;
56
57 /**
58  * Memop-flags.
59  */
60 enum memop_flags {
61         FLAG_KILL_ALL    = 1, /**< KILL all addresses */
62         FLAG_KILLED_NODE = 2, /**< this node was killed */
63         FLAG_EXCEPTION   = 4, /**< this node has exception flow */
64         FLAG_IGNORE      = 8, /**< ignore this node (volatile or other) */
65 };
66
67 /**
68  * A value: This represents a value stored at a given address in
69  * memory. Do not confuse with values from value numbering.
70  */
71 typedef struct value_t value_t;
72 struct value_t {
73         ir_node  *address;    /**< the address of this value */
74         ir_node  *value;      /**< the value itself */
75         ir_mode  *mode;       /**< the mode of the value */
76         unsigned id;          /**< address id */
77 };
78
79 /**
80  * A memop describes an memory-related operation.
81  * These are Loads/Store and all other ops that might modify
82  * memory (Calls, CopyB) or causing exceptions.
83  */
84 typedef struct memop_t memop_t;
85 struct memop_t {
86         value_t  value;      /**< the value of this memop: only defined for Load/Store */
87         ir_node  *node;      /**< the memory op itself */
88         ir_node  *mem;       /**< the memory FROM this node */
89         ir_node  *replace;   /**< the replacement node if this memop is replaced */
90         memop_t  *next;      /**< links to the next memory op in the block in forward order. */
91         memop_t  *prev;      /**< links to the previous memory op in the block in forward order. */
92         unsigned flags;      /**< memop flags */
93         ir_node  *projs[MAX_PROJ]; /**< Projs of this memory op */
94 };
95
96 /**
97  * Additional data for every basic block.
98  */
99 typedef struct block_t block_t;
100 struct block_t {
101         memop_t  *memop_forward;     /**< topologically sorted list of memory ops in this block */
102         memop_t  *memop_backward;    /**< last memop in the list */
103         unsigned *avail_out;         /**< out-set of available addresses */
104         memop_t  **id_2_memop_avail; /**< maps avail address ids to memops */
105         unsigned *anticL_in;         /**< in-set of anticipated Load addresses */
106         memop_t  **id_2_memop_antic; /**< maps anticipated address ids to memops */
107         ir_node  *block;             /**< the associated block */
108         block_t  *forward_next;      /**< next block entry for forward iteration */
109         block_t  *backward_next;     /**< next block entry for backward iteration */
110         memop_t  *avail;             /**< used locally for the avail map */
111         memop_t  **trans_results;    /**< used to cached translated nodes due antic calculation. */
112 };
113
114 /**
115  * Metadata for this pass.
116  */
117 typedef struct ldst_env_t {
118         struct obstack  obst;              /**< obstack for temporary data */
119         ir_nodemap_t    adr_map;           /**< Map addresses to */
120         block_t         *forward;          /**< Inverse post-order list of all blocks Start->End */
121         block_t         *backward;         /**< Inverse post-order list of all blocks End->Start */
122         ir_node         *start_bl;         /**< start block of the current graph */
123         ir_node         *end_bl;           /**< end block of the current graph */
124         unsigned        *curr_set;         /**< current set of addresses */
125         memop_t         **curr_id_2_memop; /**< current map of address ids to memops */
126         unsigned        curr_adr_id;       /**< number for address mapping */
127         unsigned        n_mem_ops;         /**< number of memory operations (Loads/Stores) */
128         unsigned        rbs_size;          /**< size of all bitsets in bytes */
129         int             max_cfg_preds;     /**< maximum number of block cfg predecessors */
130         int             changed;           /**< Flags for changed graph state */
131 #ifdef DEBUG_libfirm
132         ir_node         **id_2_address;    /**< maps an id to the used address */
133 #endif
134 } ldst_env;
135
136 /* the one and only environment */
137 static ldst_env env;
138
139 #ifdef DEBUG_libfirm
140
141 static firm_dbg_module_t *dbg;
142
143 /**
144  * Dumps the block list.
145  *
146  * @param ldst environment
147  */
148 static void dump_block_list(ldst_env *env) {
149         block_t *entry;
150         memop_t *op;
151         int     i;
152
153         for (entry = env->forward; entry != NULL; entry = entry->forward_next) {
154                 DB((dbg, LEVEL_2, "%+F {", entry->block));
155
156                 i = 0;
157                 for (op = entry->memop_forward; op != NULL; op = op->next) {
158                         if (i == 0) {
159                                 DB((dbg, LEVEL_2, "\n\t"));
160                         }                       DB((dbg, LEVEL_2, "%+F", op->node));
161                         if ((op->flags & FLAG_KILL_ALL) == FLAG_KILL_ALL)
162                                 DB((dbg, LEVEL_2, "X"));
163                         else if (op->flags & FLAG_KILL_ALL)
164                                 DB((dbg, LEVEL_2, "K"));
165                         DB((dbg, LEVEL_2, ", "));
166
167                         i = (i + 1) & 3;
168                 }
169                 DB((dbg, LEVEL_2, "\n}\n\n"));
170         }
171 }  /* dump_block_list */
172
173 /**
174  * Dumps the current set.
175  *
176  * @param bl   current block
177  * @param s    name of the set
178  */
179 static void dump_curr(block_t *bl, const char *s) {
180         unsigned end = env.rbs_size - 1;
181         unsigned pos;
182         int      i;
183
184         DB((dbg, LEVEL_2, "%s[%+F] = {", s, bl->block));
185         i = 0;
186         for (pos = rbitset_next(env.curr_set, 0, 1); pos < end; pos = rbitset_next(env.curr_set, pos + 1, 1)) {
187                 memop_t *op = env.curr_id_2_memop[pos];
188
189                 if (i == 0) {
190                         DB((dbg, LEVEL_2, "\n\t"));
191                 }
192
193                 DB((dbg, LEVEL_2, "<%+F, %+F>, ", op->value.address, op->value.value));
194                 i = (i + 1) & 3;
195         }
196         DB((dbg, LEVEL_2, "\n}\n"));
197 }  /* dump_curr */
198
199 #else
200 static void dump_block_list(ldst_env *env) {
201         (void) env;
202 }
203 static void dump_curr(block_t *bl, const char *s) {
204         (void) bl;
205         (void) s;
206 }
207 #endif /* DEBUG_libfirm */
208
209 /** Get the block entry for a block node */
210 static block_t *get_block_entry(const ir_node *block) {
211         assert(is_Block(block));
212
213         return get_irn_link(block);
214 }  /* get_block_entry */
215
216 /** Get the memop entry for a memory operation node */
217 static memop_t *get_irn_memop(const ir_node *irn) {
218         assert(! is_Block(irn));
219         return get_irn_link(irn);
220 }  /* get_irn_memop */
221
222 /**
223  * Walk over the memory edges from definition to users.
224  * This ensures, that even operation without memory output are found.
225  *
226  * @param irn   start node
227  * @param pre   pre walker function
228  * @param post  post walker function
229  * @param ctx   context parameter for the walker functions
230  */
231 static void walk_memory(ir_node *irn, irg_walk_func *pre, irg_walk_func *post, void *ctx) {
232         int     i;
233         ir_mode *mode;
234
235         mark_irn_visited(irn);
236
237         if (pre)
238                 pre(irn, ctx);
239
240         mode = get_irn_mode(irn);
241         if (mode == mode_M) {
242                 /* every successor uses memory */
243                 for (i = get_irn_n_outs(irn) - 1; i >= 0; --i) {
244                         ir_node *succ = get_irn_out(irn, i);
245
246                         if (! irn_visited(succ))
247                                 walk_memory(succ, pre, post, ctx);
248                 }
249         } else if (mode == mode_T) {
250                 /* only some Proj's uses memory */
251                 for (i = get_irn_n_outs(irn) - 1; i >= 0; --i) {
252                         ir_node *proj = get_irn_out(irn, i);
253
254                         if (get_irn_mode(proj) == mode_M && ! irn_visited(proj))
255                                 walk_memory(proj, pre, post, ctx);
256                 }
257         }
258         if (post)
259                 post(irn, ctx);
260 }  /* walk_memory */
261
262 /**
263  * Walks over all memory nodes of a graph.
264  *
265  * @param irg   a graph
266  * @param pre   pre walker function
267  * @param post  post walker function
268  * @param ctx   context parameter for the walker functions
269  */
270 static void walk_memory_irg(ir_graph *irg, irg_walk_func pre, irg_walk_func post, void *ctx) {
271         inc_irg_visited(irg);
272
273         ir_reserve_resources(irg, IR_RESOURCE_IRN_VISITED);
274
275         /*
276          * there are two possible sources for memory: initial_mem and nomem
277          * we ignore nomem as this should NOT change the memory
278          */
279         walk_memory(get_irg_initial_mem(irg), pre, post, ctx);
280
281         ir_free_resources(irg, IR_RESOURCE_IRN_VISITED);
282 }  /* walk_memory_irg */
283
284 /**
285  * Register an address and allocate a (sparse, 0..n) ID for it.
286  *
287  * @param adr  the IR-node representing the address
288  *
289  * @return the allocated id
290  */
291 static unsigned register_address(ir_node *adr) {
292         address_entry *entry;
293
294         /* skip Confirms and Casts */
295 restart:
296         if (is_Confirm(adr)) {
297                 adr = get_Confirm_value(adr);
298                 goto restart;
299         }
300         if (is_Cast(adr)) {
301                 adr = get_Cast_op(adr);
302                 goto restart;
303         }
304
305         entry = ir_nodemap_get(&env.adr_map, adr);
306
307         if (entry == NULL) {
308                 /* new address */
309                 entry = OALLOC(&env.obst, address_entry);
310
311                 entry->id = env.curr_adr_id++;
312                 ir_nodemap_insert(&env.adr_map, adr, entry);
313
314                 DB((dbg, LEVEL_3, "ADDRESS %+F has ID %u\n", adr, entry->id));
315 #ifdef DEBUG_libfirm
316                 ARR_APP1(ir_node *, env.id_2_address, adr);
317 #endif
318         }
319         return entry->id;
320 }  /* register_address */
321
322
323 /**
324  * translate an address through a Phi node into a given predecessor
325  * block.
326  *
327  * @param address  the address
328  * @param block    the block
329  * @param pos      the position of the predecessor in block
330  */
331 static ir_node *phi_translate(ir_node *address, const ir_node *block, int pos) {
332         if (is_Phi(address) && get_nodes_block(address) == block)
333                 address = get_Phi_pred(address, pos);
334         return address;
335 }  /* phi_translate */
336
337 /**
338  * Walker: allocate an block entry for every block
339  * and register all potential addresses.
340  */
341 static void prepare_blocks(ir_node *irn, void *ctx) {
342         (void)ctx;
343
344         if (is_Block(irn)) {
345                 block_t *entry = OALLOC(&env.obst, block_t);
346                 int     n;
347
348                 entry->memop_forward    = NULL;
349                 entry->memop_backward   = NULL;
350                 entry->avail_out        = NULL;
351                 entry->id_2_memop_avail = NULL;
352                 entry->anticL_in        = NULL;
353                 entry->id_2_memop_antic = NULL;
354                 entry->block            = irn;
355                 entry->forward_next     = NULL;
356                 entry->backward_next    = NULL;
357                 entry->avail            = NULL;
358                 entry->trans_results    = NULL;
359                 set_irn_link(irn, entry);
360
361                 set_Block_phis(irn, NULL);
362
363                 /* use block marks to track unreachable blocks */
364                 set_Block_mark(irn, 0);
365
366                 n = get_Block_n_cfgpreds(irn);
367                 if (n > env.max_cfg_preds)
368                         env.max_cfg_preds = n;
369         } else {
370                 ir_mode *mode = get_irn_mode(irn);
371
372                 if (mode_is_reference(mode)) {
373                         /*
374                          * Register ALL possible addresses: this is overkill yet but
375                          * simpler then doing it for all possible translated addresses
376                          * (which would be sufficient in the moment.
377                          */
378                         (void)register_address(irn);
379                 }
380         }
381 }  /* prepare_blocks */
382
383 /**
384  * Post-Walker, link in all Phi's
385  */
386 static void link_phis(ir_node *irn, void *ctx) {
387         (void)ctx;
388
389         if (is_Phi(irn)) {
390                 ir_node *block = get_nodes_block(irn);
391                 add_Block_phi(block, irn);
392         }
393 }  /* link_phis */
394
395 /**
396  * Block walker: creates the inverse post-order list for the CFG.
397  */
398 static void inverse_post_order(ir_node *block, void *ctx) {
399         block_t *entry = get_block_entry(block);
400
401         (void)ctx;
402
403         /* mark this block IS reachable from start */
404         set_Block_mark(block, 1);
405
406         /* create the list in inverse order */
407         entry->forward_next = env.forward;
408         env.forward         = entry;
409
410         /* remember the first visited (last in list) entry, needed for later */
411         if (env.backward == NULL)
412                 env.backward = entry;
413 }  /* inverse_post_order */
414
415 /**
416  * Block walker: create backward links for the memops of a block.
417  */
418 static void collect_backward(ir_node *block, void *ctx) {
419         block_t *entry = get_block_entry(block);
420         memop_t *last, *op;
421
422         (void)ctx;
423
424         /*
425          * Do NOT link in the end block yet. We want it to be
426          * the first in the list. This is NOT guaranteed by the walker
427          * if we have endless loops.
428          */
429         if (block != env.end_bl) {
430                 entry->backward_next = env.backward;
431
432                 /* create the list in inverse order */
433                 env.backward = entry;
434         }
435
436         /* create backward links for all memory ops */
437         last = NULL;
438         for (op = entry->memop_forward; op != NULL; op = op->next) {
439                 op->prev = last;
440                 last     = op;
441         }
442         entry->memop_backward = last;
443 }  /* collect_backward */
444
445 /**
446  * Allocate a memop.
447  *
448  * @param irn  the IR-node representing the memop or NULL
449  *             if this is a translated (virtual) memop
450  *
451  * @return the allocated memop
452  */
453 static memop_t *alloc_memop(ir_node *irn) {
454         memop_t *m = OALLOC(&env.obst, memop_t);
455
456         m->value.address = NULL;
457         m->value.value   = NULL;
458         m->value.mode    = NULL;
459
460         m->node          = irn;
461         m->mem           = NULL;
462         m->replace       = NULL;
463         m->next          = NULL;
464         m->flags         = 0;
465
466         memset(m->projs, 0, sizeof(m->projs));
467
468         if (irn != NULL)
469                 set_irn_link(irn, m);
470         return m;
471 }  /* alloc_memop */
472
473 /**
474  * Create a memop for a Phi-replacement.
475  *
476  * @param op   the memop to clone
477  * @param phi  the Phi-node representing the new value
478  */
479 static memop_t *clone_memop_phi(memop_t *op, ir_node *phi) {
480         memop_t *m = OALLOC(&env.obst, memop_t);
481
482         m->value         = op->value;
483         m->value.value   = phi;
484
485         m->node          = phi;
486         m->replace       = NULL;
487         m->next          = NULL;
488         m->flags         = 0;
489
490         set_irn_link(phi, m);
491         return m;
492 }  /* clone_memop_phi */
493
494 /**
495  * Return the memory properties of a call node.
496  *
497  * @param call  the call node
498  *
499  * return a bitset of mtp_property_const and mtp_property_pure
500  */
501 static unsigned get_Call_memory_properties(ir_node *call) {
502         ir_type *call_tp = get_Call_type(call);
503         unsigned prop = get_method_additional_properties(call_tp);
504
505         /* check first the call type */
506         if ((prop & (mtp_property_const|mtp_property_pure)) == 0) {
507                 /* try the called entity */
508                 ir_node *ptr = get_Call_ptr(call);
509
510                 if (is_Global(ptr)) {
511                         ir_entity *ent = get_Global_entity(ptr);
512
513                         prop = get_entity_additional_properties(ent);
514                 }
515         }
516         return prop & (mtp_property_const|mtp_property_pure);
517 }  /* get_Call_memory_properties */
518
519 /**
520  * Returns an entity if the address ptr points to a constant one.
521  *
522  * @param ptr  the address
523  *
524  * @return an entity or NULL
525  */
526 static ir_entity *find_constant_entity(ir_node *ptr) {
527         for (;;) {
528                 if (is_SymConst(ptr) && get_SymConst_kind(ptr) == symconst_addr_ent) {
529                         return get_SymConst_entity(ptr);
530                 } else if (is_Sel(ptr)) {
531                         ir_entity *ent = get_Sel_entity(ptr);
532                         ir_type   *tp  = get_entity_owner(ent);
533
534                         /* Do not fiddle with polymorphism. */
535                         if (is_Class_type(get_entity_owner(ent)) &&
536                                 ((get_entity_n_overwrites(ent)    != 0) ||
537                                 (get_entity_n_overwrittenby(ent) != 0)   ) )
538                                 return NULL;
539
540                         if (is_Array_type(tp)) {
541                                 /* check bounds */
542                                 int i, n;
543
544                                 for (i = 0, n = get_Sel_n_indexs(ptr); i < n; ++i) {
545                                         ir_node *bound;
546                                         tarval *tlower, *tupper;
547                                         ir_node *index = get_Sel_index(ptr, i);
548                                         tarval *tv     = computed_value(index);
549
550                                         /* check if the index is constant */
551                                         if (tv == tarval_bad)
552                                                 return NULL;
553
554                                         bound  = get_array_lower_bound(tp, i);
555                                         tlower = computed_value(bound);
556                                         bound  = get_array_upper_bound(tp, i);
557                                         tupper = computed_value(bound);
558
559                                         if (tlower == tarval_bad || tupper == tarval_bad)
560                                                 return NULL;
561
562                                         if (tarval_cmp(tv, tlower) & pn_Cmp_Lt)
563                                                 return NULL;
564                                         if (tarval_cmp(tupper, tv) & pn_Cmp_Lt)
565                                                 return NULL;
566
567                                         /* ok, bounds check finished */
568                                 }
569                         }
570
571                         if (get_entity_linkage(ent) == IR_LINKAGE_CONSTANT)
572                                 return ent;
573
574                         /* try next */
575                         ptr = get_Sel_ptr(ptr);
576                 } else if (is_Add(ptr)) {
577                         ir_node *l = get_Add_left(ptr);
578                         ir_node *r = get_Add_right(ptr);
579
580                         if (get_irn_mode(l) == get_irn_mode(ptr) && is_Const(r))
581                                 ptr = l;
582                         else if (get_irn_mode(r) == get_irn_mode(ptr) && is_Const(l))
583                                 ptr = r;
584                         else
585                                 return NULL;
586
587                         /* for now, we support only one addition, reassoc should fold all others */
588                         if (! is_SymConst(ptr) && !is_Sel(ptr))
589                                 return NULL;
590                 } else if (is_Sub(ptr)) {
591                         ir_node *l = get_Sub_left(ptr);
592                         ir_node *r = get_Sub_right(ptr);
593
594                         if (get_irn_mode(l) == get_irn_mode(ptr) &&     is_Const(r))
595                                 ptr = l;
596                         else
597                                 return NULL;
598                         /* for now, we support only one subtraction, reassoc should fold all others */
599                         if (! is_SymConst(ptr) && !is_Sel(ptr))
600                                 return NULL;
601                 } else
602                         return NULL;
603         }
604 }  /* find_constant_entity */
605
606 /**
607  * Return the Selection index of a Sel node from dimension n
608  */
609 static long get_Sel_array_index_long(ir_node *n, int dim) {
610         ir_node *index = get_Sel_index(n, dim);
611         assert(is_Const(index));
612         return get_tarval_long(get_Const_tarval(index));
613 }  /* get_Sel_array_index_long */
614
615 /**
616  * Returns the accessed component graph path for an
617  * node computing an address.
618  *
619  * @param ptr    the node computing the address
620  * @param depth  current depth in steps upward from the root
621  *               of the address
622  */
623 static compound_graph_path *rec_get_accessed_path(ir_node *ptr, int depth) {
624         compound_graph_path *res = NULL;
625         ir_entity           *root, *field, *ent;
626         int                 path_len, pos, idx;
627         tarval              *tv;
628         ir_type             *tp;
629
630         if (is_SymConst(ptr)) {
631                 /* a SymConst. If the depth is 0, this is an access to a global
632                  * entity and we don't need a component path, else we know
633                  * at least its length.
634                  */
635                 assert(get_SymConst_kind(ptr) == symconst_addr_ent);
636                 root = get_SymConst_entity(ptr);
637                 res = (depth == 0) ? NULL : new_compound_graph_path(get_entity_type(root), depth);
638         } else if (is_Sel(ptr)) {
639                 /* it's a Sel, go up until we find the root */
640                 res = rec_get_accessed_path(get_Sel_ptr(ptr), depth+1);
641                 if (res == NULL)
642                         return NULL;
643
644                 /* fill up the step in the path at the current position */
645                 field    = get_Sel_entity(ptr);
646                 path_len = get_compound_graph_path_length(res);
647                 pos      = path_len - depth - 1;
648                 set_compound_graph_path_node(res, pos, field);
649
650                 if (is_Array_type(get_entity_owner(field))) {
651                         assert(get_Sel_n_indexs(ptr) == 1 && "multi dim arrays not implemented");
652                         set_compound_graph_path_array_index(res, pos, get_Sel_array_index_long(ptr, 0));
653                 }
654         } else if (is_Add(ptr)) {
655                 ir_node *l    = get_Add_left(ptr);
656                 ir_node *r    = get_Add_right(ptr);
657                 ir_mode *mode = get_irn_mode(ptr);
658                 tarval  *tmp;
659
660                 if (is_Const(r) && get_irn_mode(l) == mode) {
661                         ptr = l;
662                         tv  = get_Const_tarval(r);
663                 } else {
664                         ptr = r;
665                         tv  = get_Const_tarval(l);
666                 }
667 ptr_arith:
668                 mode = get_tarval_mode(tv);
669                 tmp  = tv;
670
671                 /* ptr must be a Sel or a SymConst, this was checked in find_constant_entity() */
672                 if (is_Sel(ptr)) {
673                         field = get_Sel_entity(ptr);
674                 } else {
675                         field = get_SymConst_entity(ptr);
676                 }
677                 idx = 0;
678                 for (ent = field;;) {
679                         unsigned size;
680                         tarval   *sz, *tv_index, *tlower, *tupper;
681                         ir_node  *bound;
682
683                         tp = get_entity_type(ent);
684                         if (! is_Array_type(tp))
685                                 break;
686                         ent = get_array_element_entity(tp);
687                         size = get_type_size_bytes(get_entity_type(ent));
688                         sz   = new_tarval_from_long(size, mode);
689
690                         tv_index = tarval_div(tmp, sz);
691                         tmp      = tarval_mod(tmp, sz);
692
693                         if (tv_index == tarval_bad || tmp == tarval_bad)
694                                 return NULL;
695
696                         assert(get_array_n_dimensions(tp) == 1 && "multiarrays not implemented");
697                         bound  = get_array_lower_bound(tp, 0);
698                         tlower = computed_value(bound);
699                         bound  = get_array_upper_bound(tp, 0);
700                         tupper = computed_value(bound);
701
702                         if (tlower == tarval_bad || tupper == tarval_bad)
703                                 return NULL;
704
705                         if (tarval_cmp(tv_index, tlower) & pn_Cmp_Lt)
706                                 return NULL;
707                         if (tarval_cmp(tupper, tv_index) & pn_Cmp_Lt)
708                                 return NULL;
709
710                         /* ok, bounds check finished */
711                         ++idx;
712                 }
713                 if (! tarval_is_null(tmp)) {
714                         /* access to some struct/union member */
715                         return NULL;
716                 }
717
718                 /* should be at least ONE array */
719                 if (idx == 0)
720                         return NULL;
721
722                 res = rec_get_accessed_path(ptr, depth + idx);
723                 if (res == NULL)
724                         return NULL;
725
726                 path_len = get_compound_graph_path_length(res);
727                 pos      = path_len - depth - idx;
728
729                 for (ent = field;;) {
730                         unsigned size;
731                         tarval   *sz, *tv_index;
732                         long     index;
733
734                         tp = get_entity_type(ent);
735                         if (! is_Array_type(tp))
736                                 break;
737                         ent = get_array_element_entity(tp);
738                         set_compound_graph_path_node(res, pos, ent);
739
740                         size = get_type_size_bytes(get_entity_type(ent));
741                         sz   = new_tarval_from_long(size, mode);
742
743                         tv_index = tarval_div(tv, sz);
744                         tv       = tarval_mod(tv, sz);
745
746                         /* worked above, should work again */
747                         assert(tv_index != tarval_bad && tv != tarval_bad);
748
749                         /* bounds already checked above */
750                         index = get_tarval_long(tv_index);
751                         set_compound_graph_path_array_index(res, pos, index);
752                         ++pos;
753                 }
754         } else if (is_Sub(ptr)) {
755                 ir_node *l = get_Sub_left(ptr);
756                 ir_node *r = get_Sub_right(ptr);
757
758                 ptr = l;
759                 tv  = get_Const_tarval(r);
760                 tv  = tarval_neg(tv);
761                 goto ptr_arith;
762         }
763         return res;
764 }  /* rec_get_accessed_path */
765
766 /**
767  * Returns an access path or NULL.  The access path is only
768  * valid, if the graph is in phase_high and _no_ address computation is used.
769  */
770 static compound_graph_path *get_accessed_path(ir_node *ptr) {
771         compound_graph_path *gr = rec_get_accessed_path(ptr, 0);
772         return gr;
773 }  /* get_accessed_path */
774
775 typedef struct path_entry {
776         ir_entity         *ent;
777         struct path_entry *next;
778         long              index;
779 } path_entry;
780
781 static ir_node *rec_find_compound_ent_value(ir_node *ptr, path_entry *next) {
782         path_entry       entry, *p;
783         ir_entity        *ent, *field;
784         ir_initializer_t *initializer;
785         tarval           *tv;
786         ir_type          *tp;
787         unsigned         n;
788
789         entry.next = next;
790         if (is_SymConst(ptr)) {
791                 /* found the root */
792                 ent         = get_SymConst_entity(ptr);
793                 initializer = get_entity_initializer(ent);
794                 for (p = next; p != NULL;) {
795                         if (initializer->kind != IR_INITIALIZER_COMPOUND)
796                                 return NULL;
797                         n  = get_initializer_compound_n_entries(initializer);
798                         tp = get_entity_type(ent);
799
800                         if (is_Array_type(tp)) {
801                                 ent = get_array_element_entity(tp);
802                                 if (ent != p->ent) {
803                                         /* a missing [0] */
804                                         if (0 >= n)
805                                                 return NULL;
806                                         initializer = get_initializer_compound_value(initializer, 0);
807                                         continue;
808                                 }
809                         }
810                         if (p->index >= (int) n)
811                                 return NULL;
812                         initializer = get_initializer_compound_value(initializer, p->index);
813
814                         ent = p->ent;
815                         p   = p->next;
816                 }
817                 tp = get_entity_type(ent);
818                 while (is_Array_type(tp)) {
819                         ent = get_array_element_entity(tp);
820                         tp = get_entity_type(ent);
821                         /* a missing [0] */
822                         n  = get_initializer_compound_n_entries(initializer);
823                         if (0 >= n)
824                                 return NULL;
825                         initializer = get_initializer_compound_value(initializer, 0);
826                 }
827
828                 switch (initializer->kind) {
829                 case IR_INITIALIZER_CONST:
830                         return get_initializer_const_value(initializer);
831                 case IR_INITIALIZER_TARVAL:
832                 case IR_INITIALIZER_NULL:
833                 default:
834                         return NULL;
835                 }
836         } else if (is_Sel(ptr)) {
837                 entry.ent = field = get_Sel_entity(ptr);
838                 tp = get_entity_owner(field);
839                 if (is_Array_type(tp)) {
840                         assert(get_Sel_n_indexs(ptr) == 1 && "multi dim arrays not implemented");
841                         entry.index = get_Sel_array_index_long(ptr, 0) - get_array_lower_bound_int(tp, 0);
842                 } else {
843                         int i, n_members = get_compound_n_members(tp);
844                         for (i = 0; i < n_members; ++i) {
845                                 if (get_compound_member(tp, i) == field)
846                                         break;
847                         }
848                         if (i >= n_members) {
849                                 /* not found: should NOT happen */
850                                 return NULL;
851                         }
852                         entry.index = i;
853                 }
854                 return rec_find_compound_ent_value(get_Sel_ptr(ptr), &entry);
855         }  else if (is_Add(ptr)) {
856                 ir_node  *l = get_Add_left(ptr);
857                 ir_node  *r = get_Add_right(ptr);
858                 ir_mode  *mode;
859                 unsigned pos;
860
861                 if (is_Const(r)) {
862                         ptr = l;
863                         tv  = get_Const_tarval(r);
864                 } else {
865                         ptr = r;
866                         tv  = get_Const_tarval(l);
867                 }
868 ptr_arith:
869                 mode = get_tarval_mode(tv);
870
871                 /* ptr must be a Sel or a SymConst, this was checked in find_constant_entity() */
872                 if (is_Sel(ptr)) {
873                         field = get_Sel_entity(ptr);
874                 } else {
875                         field = get_SymConst_entity(ptr);
876                 }
877
878                 /* count needed entries */
879                 pos = 0;
880                 for (ent = field;;) {
881                         tp = get_entity_type(ent);
882                         if (! is_Array_type(tp))
883                                 break;
884                         ent = get_array_element_entity(tp);
885                         ++pos;
886                 }
887                 /* should be at least ONE entry */
888                 if (pos == 0)
889                         return NULL;
890
891                 /* allocate the right number of entries */
892                 NEW_ARR_A(path_entry, p, pos);
893
894                 /* fill them up */
895                 pos = 0;
896                 for (ent = field;;) {
897                         unsigned size;
898                         tarval   *sz, *tv_index, *tlower, *tupper;
899                         long     index;
900                         ir_node  *bound;
901
902                         tp = get_entity_type(ent);
903                         if (! is_Array_type(tp))
904                                 break;
905                         ent = get_array_element_entity(tp);
906                         p[pos].ent  = ent;
907                         p[pos].next = &p[pos + 1];
908
909                         size = get_type_size_bytes(get_entity_type(ent));
910                         sz   = new_tarval_from_long(size, mode);
911
912                         tv_index = tarval_div(tv, sz);
913                         tv       = tarval_mod(tv, sz);
914
915                         if (tv_index == tarval_bad || tv == tarval_bad)
916                                 return NULL;
917
918                         assert(get_array_n_dimensions(tp) == 1 && "multiarrays not implemented");
919                         bound  = get_array_lower_bound(tp, 0);
920                         tlower = computed_value(bound);
921                         bound  = get_array_upper_bound(tp, 0);
922                         tupper = computed_value(bound);
923
924                         if (tlower == tarval_bad || tupper == tarval_bad)
925                                 return NULL;
926
927                         if (tarval_cmp(tv_index, tlower) & pn_Cmp_Lt)
928                                 return NULL;
929                         if (tarval_cmp(tupper, tv_index) & pn_Cmp_Lt)
930                                 return NULL;
931
932                         /* ok, bounds check finished */
933                         index = get_tarval_long(tv_index);
934                         p[pos].index = index;
935                         ++pos;
936                 }
937                 if (! tarval_is_null(tv)) {
938                         /* hmm, wrong access */
939                         return NULL;
940                 }
941                 p[pos - 1].next = next;
942                 return rec_find_compound_ent_value(ptr, p);
943         } else if (is_Sub(ptr)) {
944                 ir_node *l = get_Sub_left(ptr);
945                 ir_node *r = get_Sub_right(ptr);
946
947                 ptr = l;
948                 tv  = get_Const_tarval(r);
949                 tv  = tarval_neg(tv);
950                 goto ptr_arith;
951         }
952         return NULL;
953 }  /* rec_find_compound_ent_value */
954
955 static ir_node *find_compound_ent_value(ir_node *ptr) {
956         return rec_find_compound_ent_value(ptr, NULL);
957 }  /* find_compound_ent_value */
958
959 /**
960  * Mark a Load memop to be replace by a definition
961  *
962  * @param op  the Load memop
963  */
964 static void mark_replace_load(memop_t *op, ir_node *def) {
965         op->replace = def;
966         op->flags |= FLAG_KILLED_NODE;
967         env.changed = 1;
968 }  /* mark_replace_load */
969
970 /**
971  * Mark a Store memop to be removed.
972  *
973  * @param op  the Store memop
974  */
975 static void mark_remove_store(memop_t *op) {
976         op->flags |= FLAG_KILLED_NODE;
977         env.changed = 1;
978 }  /* mark_remove_store */
979
980 /**
981  * Update a memop for a Load.
982  *
983  * @param m  the memop
984  */
985 static void update_Load_memop(memop_t *m) {
986         int       i;
987         ir_node   *load = m->node;
988         ir_node   *ptr;
989         ir_entity *ent;
990
991         if (get_Load_volatility(load) == volatility_is_volatile)
992                 m->flags |= FLAG_IGNORE;
993
994         ptr = get_Load_ptr(load);
995
996         m->value.address = ptr;
997
998         for (i = get_irn_n_outs(load) - 1; i >= 0; --i) {
999                 ir_node *proj = get_irn_out(load, i);
1000                 long    pn;
1001
1002                 /* beware of keep edges */
1003                 if (is_End(proj))
1004                         continue;
1005
1006                 pn = get_Proj_proj(proj);
1007                 m->projs[pn] = proj;
1008                 switch (pn) {
1009                 case pn_Load_res:
1010                         m->value.value = proj;
1011                         m->value.mode  = get_irn_mode(proj);
1012                         break;
1013                 case pn_Load_X_except:
1014                         m->flags |= FLAG_EXCEPTION;
1015                         break;
1016                 case pn_Load_M:
1017                         m->mem = proj;
1018                         break;
1019                 case pn_Load_X_regular:
1020                         break;
1021                 default:
1022                         panic("Unsupported Proj from Load %+F", proj);
1023                 }
1024         }
1025
1026         /* check if we can determine the entity that will be loaded */
1027         ent = find_constant_entity(ptr);
1028
1029         if (ent != NULL && get_entity_visibility(ent) != ir_visibility_external) {
1030                 /* a static allocation that is not external: there should be NO exception
1031                  * when loading even if we cannot replace the load itself. */
1032                 ir_node *value = NULL;
1033
1034                 /* no exception, clear the m fields as it might be checked later again */
1035                 if (m->projs[pn_Load_X_except]) {
1036                         exchange(m->projs[pn_Load_X_except], new_Bad());
1037                         m->projs[pn_Load_X_except] = NULL;
1038                         m->flags &= ~FLAG_EXCEPTION;
1039                         env.changed = 1;
1040                 }
1041                 if (m->projs[pn_Load_X_regular]) {
1042                         exchange(m->projs[pn_Load_X_regular], new_r_Jmp(get_nodes_block(load)));
1043                         m->projs[pn_Load_X_regular] = NULL;
1044                         env.changed = 1;
1045                 }
1046
1047                 if (get_entity_linkage(ent) & IR_LINKAGE_CONSTANT) {
1048                         if (ent->initializer) {
1049                                 /* new style initializer */
1050                                 value = find_compound_ent_value(ptr);
1051                         } else if (entity_has_compound_ent_values(ent)) {
1052                                 /* old style initializer */
1053                                 compound_graph_path *path = get_accessed_path(ptr);
1054
1055                                 if (path != NULL) {
1056                                         assert(is_proper_compound_graph_path(path, get_compound_graph_path_length(path)-1));
1057
1058                                         value = get_compound_ent_value_by_path(ent, path);
1059                                         DB((dbg, LEVEL_1, "  Constant access at %F%F resulted in %+F\n", ent, path, value));
1060                                         free_compound_graph_path(path);
1061                                 }
1062                         }
1063                         if (value != NULL)
1064                                 value = can_replace_load_by_const(load, value);
1065                 }
1066
1067                 if (value != NULL) {
1068                         /* we completely replace the load by this value */
1069                         DB((dbg, LEVEL_1, "Replacing Load %+F by constant %+F\n", m->node, value));
1070                         mark_replace_load(m, value);
1071                         return;
1072                 }
1073         }
1074
1075         if (m->value.value != NULL && !(m->flags & FLAG_IGNORE)) {
1076                 /* only create an address if this node is NOT killed immediately or ignored */
1077                 m->value.id = register_address(ptr);
1078                 ++env.n_mem_ops;
1079         } else {
1080                 /* no user, KILL it */
1081                 mark_replace_load(m, NULL);
1082         }
1083 }  /* update_Load_memop */
1084
1085 /**
1086  * Update a memop for a Store.
1087  *
1088  * @param m  the memop
1089  */
1090 static void update_Store_memop(memop_t *m) {
1091         int     i;
1092         ir_node *store = m->node;
1093         ir_node *adr   = get_Store_ptr(store);
1094
1095         if (get_Store_volatility(store) == volatility_is_volatile) {
1096                 m->flags |= FLAG_IGNORE;
1097         } else {
1098                 /* only create an address if this node is NOT ignored */
1099                 m->value.id = register_address(adr);
1100                 ++env.n_mem_ops;
1101         }
1102
1103         m->value.address = adr;
1104
1105         for (i = get_irn_n_outs(store) - 1; i >= 0; --i) {
1106                 ir_node *proj = get_irn_out(store, i);
1107                 long    pn;
1108
1109                 /* beware of keep edges */
1110                 if (is_End(proj))
1111                         continue;
1112
1113                 pn = get_Proj_proj(proj);
1114                 m->projs[pn] = proj;
1115                 switch (pn) {
1116                 case pn_Store_X_except:
1117                         m->flags |= FLAG_EXCEPTION;
1118                         break;
1119                 case pn_Store_M:
1120                         m->mem = proj;
1121                         break;
1122                 case pn_Store_X_regular:
1123                         break;
1124                 default:
1125                         panic("Unsupported Proj from Store %+F", proj);
1126                 }
1127         }
1128         m->value.value = get_Store_value(store);
1129         m->value.mode  = get_irn_mode(m->value.value);
1130 }  /* update_Store_memop */
1131
1132 /**
1133  * Update a memop for a Call.
1134  *
1135  * @param m  the memop
1136  */
1137 static void update_Call_memop(memop_t *m) {
1138         ir_node  *call = m->node;
1139         unsigned prop  = get_Call_memory_properties(call);
1140         int      i;
1141
1142         if (prop & mtp_property_const) {
1143                 /* A constant call did NOT use memory at all, we
1144                    can kick it from the list. */
1145         } else if (prop & mtp_property_pure) {
1146                 /* pure calls READ memory */
1147                 m->flags = 0;
1148         } else
1149                 m->flags = FLAG_KILL_ALL;
1150
1151         for (i = get_irn_n_outs(call) - 1; i >= 0; --i) {
1152                 ir_node *proj = get_irn_out(call, i);
1153
1154                 /* beware of keep edges */
1155                 if (is_End(proj))
1156                         continue;
1157
1158                 switch (get_Proj_proj(proj)) {
1159                 case pn_Call_X_except:
1160                         m->flags |= FLAG_EXCEPTION;
1161                         break;
1162                 case pn_Call_M:
1163                         m->mem = proj;
1164                         break;
1165                 }
1166         }
1167 }  /* update_Call_memop */
1168
1169 /**
1170  * Update a memop for a Div/Mod/Quot/DivMod.
1171  *
1172  * @param m  the memop
1173  */
1174 static void update_DivOp_memop(memop_t *m) {
1175         ir_node *div = m->node;
1176         int     i;
1177
1178         for (i = get_irn_n_outs(div) - 1; i >= 0; --i) {
1179                 ir_node *proj = get_irn_out(div, i);
1180
1181                 /* beware of keep edges */
1182                 if (is_End(proj))
1183                         continue;
1184
1185                 switch (get_Proj_proj(proj)) {
1186                 case pn_Generic_X_except:
1187                         m->flags |= FLAG_EXCEPTION;
1188                         break;
1189                 case pn_Generic_M:
1190                         m->mem = proj;
1191                         break;
1192                 }
1193         }
1194 }  /* update_DivOp_memop */
1195
1196 /**
1197  * Update a memop for a Phi.
1198  *
1199  * @param m  the memop
1200  */
1201 static void update_Phi_memop(memop_t *m) {
1202         /* the Phi is it's own mem */
1203         m->mem = m->node;
1204 }  /* update_Phi_memop */
1205
1206 /**
1207  * Memory walker: collect all memory ops and build topological lists.
1208  */
1209 static void collect_memops(ir_node *irn, void *ctx) {
1210         memop_t  *op;
1211         ir_node  *block;
1212         block_t  *entry;
1213
1214         (void) ctx;
1215         if (is_Proj(irn)) {
1216                 /* we can safely ignore ProjM's except the initial memory */
1217                 if (irn != get_irg_initial_mem(current_ir_graph))
1218                         return;
1219         }
1220
1221         op    = alloc_memop(irn);
1222         block = get_nodes_block(irn);
1223         entry = get_block_entry(block);
1224
1225         if (is_Phi(irn)) {
1226                 update_Phi_memop(op);
1227                 /* Phis must be always placed first */
1228                 op->next = entry->memop_forward;
1229                 entry->memop_forward = op;
1230                 if (entry->memop_backward == NULL)
1231                         entry->memop_backward = op;
1232         } else {
1233                 switch (get_irn_opcode(irn)) {
1234                 case iro_Load:
1235                         update_Load_memop(op);
1236                         break;
1237                 case iro_Store:
1238                         update_Store_memop(op);
1239                         break;
1240                 case iro_Call:
1241                         update_Call_memop(op);
1242                         break;
1243                 case iro_Sync:
1244                 case iro_Pin:
1245                         op->mem = irn;
1246                         break;
1247                 case iro_Proj:
1248                         /* initial memory */
1249                         op->mem = irn;
1250                         break;
1251                 case iro_Return:
1252                 case iro_End:
1253                         /* we can those to find the memory edge */
1254                         break;
1255                 case iro_Div:
1256                 case iro_DivMod:
1257                 case iro_Quot:
1258                 case iro_Mod:
1259                         update_DivOp_memop(op);
1260                         break;
1261
1262                 case iro_Builtin:
1263                         /* TODO: handle some builtins */
1264                 default:
1265                         /* unsupported operation */
1266                         op->flags = FLAG_KILL_ALL;
1267                 }
1268
1269
1270                 /* all other should be placed last */
1271                 if (entry->memop_backward == NULL) {
1272                         entry->memop_forward = entry->memop_backward = op;
1273                 } else {
1274                         entry->memop_backward->next = op;
1275                         entry->memop_backward       = op;
1276                 }
1277         }
1278 }  /* collect_memops */
1279
1280 /**
1281  * Find an address in the current set.
1282  *
1283  * @param value  the value to be searched for
1284  *
1285  * @return a memop for the value or NULL if the value does
1286  *         not exists in the set or cannot be converted into
1287  *         the requested mode
1288  */
1289 static memop_t *find_address(const value_t *value) {
1290         if (rbitset_is_set(env.curr_set, value->id)) {
1291                 memop_t *res = env.curr_id_2_memop[value->id];
1292
1293                 if (res->value.mode == value->mode)
1294                         return res;
1295                 /* allow hidden casts */
1296                 if (get_mode_arithmetic(res->value.mode) == irma_twos_complement &&
1297                     get_mode_arithmetic(value->mode) == irma_twos_complement &&
1298                     get_mode_size_bits(res->value.mode) == get_mode_size_bits(value->mode))
1299                         return res;
1300         }
1301         return NULL;
1302 }  /* find_address */
1303
1304 /**
1305  * Find an address in the avail_out set.
1306  *
1307  * @param bl     the block
1308  */
1309 static memop_t *find_address_avail(const block_t *bl, unsigned id, const ir_mode *mode) {
1310         if (rbitset_is_set(bl->avail_out, id)) {
1311                 memop_t *res = bl->id_2_memop_avail[id];
1312
1313                 if (res->value.mode == mode)
1314                         return res;
1315                 /* allow hidden casts */
1316                 if (get_mode_arithmetic(res->value.mode) == irma_twos_complement &&
1317                     get_mode_arithmetic(mode) == irma_twos_complement &&
1318                     get_mode_size_bits(res->value.mode) == get_mode_size_bits(mode))
1319                         return res;
1320         }
1321         return NULL;
1322 }  /* find_address_avail */
1323
1324 /**
1325  * Kill all addresses from the current set.
1326  */
1327 static void kill_all(void) {
1328         rbitset_clear_all(env.curr_set, env.rbs_size);
1329
1330         /* set sentinel */
1331         rbitset_set(env.curr_set, env.rbs_size - 1);
1332 }  /* kill_all */
1333
1334 /**
1335  * Kill memops that are not alias free due to a Store value from the current set.
1336  *
1337  * @param value  the Store value
1338  */
1339 static void kill_memops(const value_t *value) {
1340         unsigned end = env.rbs_size - 1;
1341         unsigned pos;
1342
1343         for (pos = rbitset_next(env.curr_set, 0, 1); pos < end; pos = rbitset_next(env.curr_set, pos + 1, 1)) {
1344                 memop_t *op = env.curr_id_2_memop[pos];
1345
1346                 if (ir_no_alias != get_alias_relation(current_ir_graph, value->address, value->mode,
1347                                                           op->value.address, op->value.mode)) {
1348                         rbitset_clear(env.curr_set, pos);
1349                         env.curr_id_2_memop[pos] = NULL;
1350                         DB((dbg, LEVEL_2, "KILLING %+F because of possible alias address %+F\n", op->node, value->address));
1351                 }
1352         }
1353 }  /* kill_memops */
1354
1355 /**
1356  * Add the value of a memop to the current set.
1357  *
1358  * @param op  the memory op
1359  */
1360 static void add_memop(memop_t *op) {
1361         rbitset_set(env.curr_set, op->value.id);
1362         env.curr_id_2_memop[op->value.id] = op;
1363 }  /* add_memop */
1364
1365 /**
1366  * Add the value of a memop to the avail_out set.
1367  *
1368  * @param bl  the block
1369  * @param op  the memory op
1370  */
1371 static void add_memop_avail(block_t *bl, memop_t *op) {
1372         rbitset_set(bl->avail_out, op->value.id);
1373         bl->id_2_memop_avail[op->value.id] = op;
1374 }  /* add_memop_avail */
1375
1376 /**
1377  * Check, if we can convert a value of one mode to another mode
1378  * without changing the representation of bits.
1379  *
1380  * @param from  the original mode
1381  * @param to    the destination mode
1382  */
1383 static int can_convert_to(const ir_mode *from, const ir_mode *to) {
1384         if (get_mode_arithmetic(from) == irma_twos_complement &&
1385             get_mode_arithmetic(to) == irma_twos_complement &&
1386             get_mode_size_bits(from) == get_mode_size_bits(to))
1387                 return 1;
1388         return 0;
1389 }  /* can_convert_to */
1390
1391 /**
1392  * Add a Conv to the requested mode if needed.
1393  *
1394  * @param irn   the IR-node to convert
1395  * @param mode  the destination mode
1396  *
1397  * @return the possible converted node or NULL
1398  *         if the conversion is not possible
1399  */
1400 static ir_node *conv_to(ir_node *irn, ir_mode *mode) {
1401         ir_mode *other = get_irn_mode(irn);
1402         if (other != mode) {
1403                 /* different modes: check if conversion is possible without changing the bits */
1404                 if (can_convert_to(other, mode)) {
1405                         ir_node *block = get_nodes_block(irn);
1406                         return new_r_Conv(block, irn, mode);
1407                 }
1408                 /* otherwise not possible ... yet */
1409                 return NULL;
1410         }
1411         return irn;
1412 }  /* conv_to */
1413
1414 /**
1415  * Update the address of an value if this address was a load result
1416  * and the load is killed now.
1417  *
1418  * @param value  the value whose address is updated
1419  */
1420 static void update_address(value_t *value) {
1421         if (is_Proj(value->address)) {
1422                 ir_node *load = get_Proj_pred(value->address);
1423
1424                 if (is_Load(load)) {
1425                         const memop_t *op = get_irn_memop(load);
1426
1427                         if (op->flags & FLAG_KILLED_NODE)
1428                                 value->address = op->replace;
1429                 }
1430         }
1431 }  /* update_address */
1432
1433 /**
1434  * Do forward dataflow analysis on the given block and calculate the
1435  * GEN and KILL in the current (avail) set.
1436  *
1437  * @param bl  the block
1438  */
1439 static void calc_gen_kill_avail(block_t *bl) {
1440         memop_t *op;
1441         ir_node *def;
1442
1443         for (op = bl->memop_forward; op != NULL; op = op->next) {
1444                 switch (get_irn_opcode(op->node)) {
1445                 case iro_Phi:
1446                         /* meet */
1447                         break;
1448                 case iro_Sync:
1449                         /* join */
1450                         break;
1451                 case iro_Load:
1452                         if (! (op->flags & (FLAG_KILLED_NODE|FLAG_IGNORE))) {
1453                                 /* do we have this already? */
1454                                 memop_t *other;
1455
1456                                 update_address(&op->value);
1457                                 other = find_address(&op->value);
1458                                 if (other != NULL && other != op) {
1459                                         def = conv_to(other->value.value, op->value.mode);
1460                                         if (def != NULL) {
1461 #ifdef DEBUG_libfirm
1462                                                 if (is_Store(other->node)) {
1463                                                         /* RAW */
1464                                                         DB((dbg, LEVEL_1, "RAW %+F <- %+F(%+F)\n", op->node, def, other->node));
1465                                                 } else {
1466                                                         /* RAR */
1467                                                         DB((dbg, LEVEL_1, "RAR %+F <- %+F(%+F)\n", op->node, def, other->node));
1468                                                 }
1469 #endif
1470                                                 mark_replace_load(op, def);
1471                                                 /* do NOT change the memop table */
1472                                                 continue;
1473                                         }
1474                                 }
1475                                 /* add this value */
1476                                 add_memop(op);
1477                         }
1478                         break;
1479                 case iro_Store:
1480                         if (! (op->flags & FLAG_KILLED_NODE)) {
1481                                 /* do we have this store already */
1482                                 memop_t *other;
1483
1484                                 update_address(&op->value);
1485                                 other = find_address(&op->value);
1486                                 if (other != NULL) {
1487                                         if (is_Store(other->node)) {
1488                                                 if (op != other && !(other->flags & FLAG_IGNORE) &&
1489                                                     get_nodes_block(other->node) == get_nodes_block(op->node)) {
1490                                                         /*
1491                                                          * A WAW in the same block we can kick the first store.
1492                                                          * This is a shortcut: we know that the second Store will be anticipated
1493                                                          * then in an case.
1494                                                          */
1495                                                         DB((dbg, LEVEL_1, "WAW %+F <- %+F\n", other->node, op->node));
1496                                                         mark_remove_store(other);
1497                                                         /* FIXME: a Load might be get freed due to this killed store */
1498                                                 }
1499                                         } else if (other->value.value == op->value.value && !(op->flags & FLAG_IGNORE)) {
1500                                                 /* WAR */
1501                                                 DB((dbg, LEVEL_1, "WAR %+F <- %+F\n", op->node, other->node));
1502                                                 mark_remove_store(op);
1503                                                 /* do NOT change the memop table */
1504                                                 continue;
1505                                         }
1506                                 }
1507                                 /* KILL all possible aliases */
1508                                 kill_memops(&op->value);
1509                                 /* add this value */
1510                                 add_memop(op);
1511                         }
1512                         break;
1513                 default:
1514                         if (op->flags & FLAG_KILL_ALL)
1515                                 kill_all();
1516                 }
1517         }
1518 }  /* calc_gen_kill_avail */
1519
1520 #define BYTE_SIZE(x)  (((x) + 7) >> 3)
1521
1522 /**
1523  * Do forward dataflow analysis on a given block to calculate the avail_out set
1524  * for this block only.
1525  *
1526  * @param block  the block
1527  */
1528 static void forward_avail(block_t *bl) {
1529         /* fill the data from the current block */
1530         env.curr_id_2_memop = bl->id_2_memop_avail;
1531         env.curr_set        = bl->avail_out;
1532
1533         calc_gen_kill_avail(bl);
1534         dump_curr(bl, "Avail_out");
1535 }  /* forward_avail */
1536
1537 /**
1538  * Do backward dataflow analysis on a given block to calculate the antic set
1539  * of Loaded addresses.
1540  *
1541  * @param bl  the block
1542  *
1543  * @return non-zero if the set has changed since last iteration
1544  */
1545 static int backward_antic(block_t *bl) {
1546         memop_t *op;
1547         ir_node *block = bl->block;
1548         int     n = get_Block_n_cfg_outs(block);
1549
1550         if (n == 1) {
1551                 ir_node  *succ    = get_Block_cfg_out(block, 0);
1552                 block_t  *succ_bl = get_block_entry(succ);
1553                 int      pred_pos = get_Block_cfgpred_pos(succ, block);
1554                 unsigned end      = env.rbs_size - 1;
1555                 unsigned pos;
1556
1557                 kill_all();
1558
1559                 if (bl->trans_results == NULL) {
1560                         /* allocate the translate cache */
1561                         bl->trans_results = OALLOCNZ(&env.obst, memop_t*, env.curr_adr_id);
1562                 }
1563
1564                 /* check for partly redundant values */
1565                 for (pos = rbitset_next(succ_bl->anticL_in, 0, 1);
1566                      pos < end;
1567                      pos = rbitset_next(succ_bl->anticL_in, pos + 1, 1)) {
1568                         /*
1569                          * do Phi-translation here: Note that at this point the nodes are
1570                          * not changed, so we can safely cache the results.
1571                          * However: Loads of Load results ARE bad, because we have no way
1572                           to translate them yet ...
1573                          */
1574                         memop_t *op = bl->trans_results[pos];
1575                         if (op == NULL) {
1576                                 /* not yet translated */
1577                                 ir_node *adr, *trans_adr;
1578
1579                                 op  = succ_bl->id_2_memop_antic[pos];
1580                                 adr = op->value.address;
1581
1582                                 trans_adr = phi_translate(adr, succ, pred_pos);
1583                                 if (trans_adr != adr) {
1584                                         /* create a new entry for the translated one */
1585                                         memop_t *new_op;
1586
1587                                         new_op = alloc_memop(NULL);
1588                                         new_op->value.address = trans_adr;
1589                                         new_op->value.id      = register_address(trans_adr);
1590                                         new_op->value.mode    = op->value.mode;
1591                                         new_op->node          = op->node; /* we need the node to decide if Load/Store */
1592                                         new_op->flags         = op->flags;
1593
1594                                         bl->trans_results[pos] = new_op;
1595                                         op = new_op;
1596                                 }
1597                         }
1598                         env.curr_id_2_memop[op->value.id] = op;
1599                         rbitset_set(env.curr_set, op->value.id);
1600                 }
1601         } else if (n > 1) {
1602                 ir_node *succ    = get_Block_cfg_out(block, 0);
1603                 block_t *succ_bl = get_block_entry(succ);
1604                 int i;
1605
1606                 rbitset_copy(env.curr_set, succ_bl->anticL_in, env.rbs_size);
1607                 memcpy(env.curr_id_2_memop, succ_bl->id_2_memop_antic, env.rbs_size * sizeof(env.curr_id_2_memop[0]));
1608
1609                 /* Hmm: probably we want kill merges of Loads ans Stores here */
1610                 for (i = n - 1; i > 0; --i) {
1611                         ir_node *succ    = get_Block_cfg_out(bl->block, i);
1612                         block_t *succ_bl = get_block_entry(succ);
1613
1614                         rbitset_and(env.curr_set, succ_bl->anticL_in, env.rbs_size);
1615                 }
1616         } else {
1617                 /* block ends with a noreturn call */
1618                 kill_all();
1619         }
1620
1621         dump_curr(bl, "AnticL_out");
1622
1623         for (op = bl->memop_backward; op != NULL; op = op->prev) {
1624                 switch (get_irn_opcode(op->node)) {
1625                 case iro_Phi:
1626                         /* meet */
1627                         break;
1628                 case iro_Sync:
1629                         /* join */
1630                         break;
1631                 case iro_Load:
1632                         if (! (op->flags & (FLAG_KILLED_NODE|FLAG_IGNORE))) {
1633                                 /* always add it */
1634                                 add_memop(op);
1635                         }
1636                         break;
1637                 case iro_Store:
1638                         if (! (op->flags & FLAG_KILLED_NODE)) {
1639                                 /* a Store: check which memops must be killed */
1640                                 kill_memops(&op->value);
1641                         }
1642                         break;
1643                 default:
1644                         if (op->flags & FLAG_KILL_ALL)
1645                                 kill_all();
1646                 }
1647         }
1648
1649         memcpy(bl->id_2_memop_antic, env.curr_id_2_memop, env.rbs_size * sizeof(env.curr_id_2_memop[0]));
1650         if (! rbitset_equal(bl->anticL_in, env.curr_set, env.rbs_size)) {
1651                 /* changed */
1652                 rbitset_copy(bl->anticL_in, env.curr_set, env.rbs_size);
1653                 dump_curr(bl, "AnticL_in*");
1654                 return 1;
1655         }
1656         dump_curr(bl, "AnticL_in");
1657         return 0;
1658 }  /* backward_antic */
1659
1660 /**
1661  * Replace a Load memop by a already known value.
1662  *
1663  * @param op  the Load memop
1664  */
1665 static void replace_load(memop_t *op) {
1666         ir_node *load = op->node;
1667         ir_node *def  = skip_Id(op->replace);
1668         ir_node *proj;
1669         ir_mode *mode;
1670
1671         if (def != NULL)
1672                 DB((dbg, LEVEL_1, "Replacing %+F by definition %+F\n", load, is_Proj(def) ? get_Proj_pred(def) : def));
1673         else {
1674                 if (op->flags & FLAG_EXCEPTION) {
1675                         /* bad: this node is unused and executed for exception only */
1676                         DB((dbg, LEVEL_1, "Unused %+F executed for exception only ...\n", load));
1677                         return;
1678                 }
1679                 DB((dbg, LEVEL_1, "Killing unused %+F\n", load));
1680         }
1681
1682         if (op->mem != NULL) {
1683                 /* in rare cases a Load might have NO memory */
1684                 exchange(op->mem, get_Load_mem(load));
1685         }
1686         proj = op->projs[pn_Load_res];
1687         if (proj != NULL) {
1688                 mode = get_irn_mode(proj);
1689                 if (get_irn_mode(def) != mode) {
1690                         /* a hidden cast */
1691                         dbg_info *db    = get_irn_dbg_info(load);
1692                         ir_node  *block = get_nodes_block(proj);
1693                         def = new_rd_Conv(db, block, def, mode);
1694                 }
1695                 exchange(proj, def);
1696         }
1697         proj = op->projs[pn_Load_X_except];
1698         if (proj != NULL) {
1699                 exchange(proj, new_Bad());
1700         }
1701         proj = op->projs[pn_Load_X_regular];
1702         if (proj != NULL) {
1703                 exchange(proj, new_r_Jmp(get_nodes_block(load)));
1704         }
1705 }  /* replace_load */
1706
1707 /**
1708  * Remove a Store memop.
1709  *
1710  * @param op  the Store memop
1711  */
1712 static void remove_store(memop_t *op) {
1713         ir_node *store = op->node;
1714         ir_node *proj;
1715
1716         DB((dbg, LEVEL_1, "Removing %+F\n", store));
1717
1718         if (op->mem != NULL) {
1719                 /* in rare cases a Store might have no memory */
1720                 exchange(op->mem, get_Store_mem(store));
1721         }
1722         proj = op->projs[pn_Store_X_except];
1723         if (proj != NULL) {
1724                 exchange(proj, new_Bad());
1725         }
1726         proj = op->projs[pn_Store_X_regular];
1727         if (proj != NULL) {
1728                 exchange(proj, new_r_Jmp(get_nodes_block(store)));
1729         }
1730 }  /* remove_store */
1731
1732
1733 /**
1734  * Do all necessary replacements for a given block.
1735  *
1736  * @param bl  the block
1737  */
1738 static void do_replacements(block_t *bl) {
1739         memop_t *op;
1740
1741         for (op = bl->memop_forward; op != NULL; op = op->next) {
1742                 if (op->flags & FLAG_KILLED_NODE) {
1743                         switch (get_irn_opcode(op->node)) {
1744                         case iro_Load:
1745                                 replace_load(op);
1746                                 break;
1747                         case iro_Store:
1748                                 remove_store(op);
1749                                 break;
1750                         }
1751                 }
1752         }
1753 }  /* do_replacements */
1754
1755 /**
1756  * Calculate the Avail_out sets for all basic blocks.
1757  */
1758 static void calcAvail(void) {
1759         memop_t  **tmp_memop = env.curr_id_2_memop;
1760         unsigned *tmp_set    = env.curr_set;
1761         block_t  *bl;
1762
1763         /* calculate avail_out */
1764         DB((dbg, LEVEL_2, "Calculate Avail_out\n"));
1765
1766         /* iterate over all blocks in in any order, skip the start block */
1767         for (bl = env.forward->forward_next; bl != NULL; bl = bl->forward_next) {
1768                 forward_avail(bl);
1769         }
1770
1771         /* restore the current sets */
1772         env.curr_id_2_memop = tmp_memop;
1773         env.curr_set        = tmp_set;
1774 }  /* calcAvail */
1775
1776 /**
1777  * Calculate the Antic_in sets for all basic blocks.
1778  */
1779 static void calcAntic(void) {
1780         int i, need_iter;
1781
1782         /* calculate antic_out */
1783         DB((dbg, LEVEL_2, "Calculate Antic_in\n"));
1784         i = 0;
1785         do {
1786                 block_t *bl;
1787
1788                 DB((dbg, LEVEL_2, "Iteration %d:\n=========\n", i));
1789
1790                 need_iter = 0;
1791
1792                 /* over all blocks in reverse post order */
1793                 for (bl = env.backward->backward_next; bl != NULL; bl = bl->backward_next) {
1794                         need_iter |= backward_antic(bl);
1795                 }
1796                 ++i;
1797         } while (need_iter);
1798         DB((dbg, LEVEL_2, "Get anticipated Load set after %d iterations\n", i));
1799 }  /* calcAntic */
1800
1801 /**
1802  * Return the node representing the last memory in a block.
1803  *
1804  * @param bl  the block
1805  */
1806 static ir_node *find_last_memory(block_t *bl) {
1807         for (;;) {
1808                 if (bl->memop_backward != NULL) {
1809                         return bl->memop_backward->mem;
1810                 }
1811                 /* if there is NO memory in this block, go to the dominator */
1812                 bl = get_block_entry(get_Block_idom(bl->block));
1813         }
1814 }  /* find_last_memory */
1815
1816 /**
1817  * Reroute all memory users of old memory
1818  * to a new memory IR-node.
1819  *
1820  * @param omem  the old memory IR-node
1821  * @param nmem  the new memory IR-node
1822  */
1823 static void reroute_all_mem_users(ir_node *omem, ir_node *nmem) {
1824         int i;
1825
1826         for (i = get_irn_n_outs(omem) - 1; i >= 0; --i) {
1827                 int     n_pos;
1828                 ir_node *user = get_irn_out_ex(omem, i, &n_pos);
1829
1830                 set_irn_n(user, n_pos, nmem);
1831         }
1832
1833         /* all edges previously point to omem now point to nmem */
1834         nmem->out = omem->out;
1835 }  /* reroute_all_mem_users */
1836
1837 /**
1838  * Reroute memory users of old memory that are dominated by a given block
1839  * to a new memory IR-node.
1840  *
1841  * @param omem     the old memory IR-node
1842  * @param nmem     the new memory IR-node
1843  * @param pass_bl  the block the memory must pass
1844  */
1845 static void reroute_mem_through(ir_node *omem, ir_node *nmem, ir_node *pass_bl) {
1846         int             i, j, n = get_irn_n_outs(omem);
1847         ir_def_use_edge *edges = NEW_ARR_D(ir_def_use_edge, &env.obst, n + 1);
1848
1849         for (i = j = 0; i < n; ++i) {
1850                 int     n_pos;
1851                 ir_node *user   = get_irn_out_ex(omem, i, &n_pos);
1852                 ir_node *use_bl = get_nodes_block(user);
1853
1854
1855                 if (is_Phi(user)) {
1856                         use_bl = get_Block_cfgpred_block(use_bl, n_pos);
1857                 }
1858                 if (block_dominates(pass_bl, use_bl)) {
1859                         /* found an user that is dominated */
1860                         ++j;
1861                         edges[j].pos = n_pos;
1862                         edges[j].use = user;
1863
1864                         set_irn_n(user, n_pos, nmem);
1865                 }
1866         }
1867
1868         /* Modify the out structure: we create a new out edge array on our
1869            temporary obstack here. This should be no problem, as we invalidate the edges
1870            at the end either. */
1871         /* first entry is used for the length */
1872         edges[0].pos = j;
1873         nmem->out = edges;
1874 }  /* reroute_mem_through */
1875
1876 /**
1877  * insert Loads, making partly redundant Loads fully redundant
1878  */
1879 static int insert_Load(block_t *bl) {
1880         ir_node  *block = bl->block;
1881         int      i, n = get_Block_n_cfgpreds(block);
1882         unsigned end = env.rbs_size - 1;
1883         unsigned pos;
1884
1885         DB((dbg, LEVEL_3, "processing %+F\n", block));
1886
1887         if (n == 0) {
1888                 /* might still happen for an unreachable block (end for instance) */
1889                 return 0;
1890         }
1891
1892         if (n > 1) {
1893                 ir_node **ins;
1894                 int     pos;
1895
1896                 NEW_ARR_A(ir_node *, ins, n);
1897
1898                 rbitset_set_all(env.curr_set, env.rbs_size);
1899
1900                 /* More than one predecessors, calculate the join for all avail_outs ignoring unevaluated
1901                    Blocks. These put in Top anyway. */
1902                 for (i = n - 1; i >= 0; --i) {
1903                         ir_node *pred = skip_Proj(get_Block_cfgpred(block, i));
1904                         ir_node *blk  = get_nodes_block(pred);
1905                         block_t *pred_bl;
1906
1907                         pred_bl = get_block_entry(blk);
1908                         rbitset_and(env.curr_set, pred_bl->avail_out, env.rbs_size);
1909
1910                         if (is_Load(pred) || is_Store(pred)) {
1911                                 /* We reached this block by an exception from a Load or Store:
1912                                  * the memop creating the exception was NOT completed than, kill it
1913                                  */
1914                                 memop_t *exc_op = get_irn_memop(pred);
1915                                 rbitset_clear(env.curr_set, exc_op->value.id);
1916                         }
1917
1918                 }
1919                 /*
1920                  * Ensure that all values are in the map: build Phi's if necessary:
1921                  * Note: the last bit is the sentinel and ALWAYS set, so start with -2.
1922                  */
1923                 for (pos = env.rbs_size - 2; pos >= 0; --pos) {
1924                         if (! rbitset_is_set(env.curr_set, pos))
1925                                 env.curr_id_2_memop[pos] = NULL;
1926                         else {
1927                                 ir_node *pred    = get_Block_cfgpred_block(bl->block, 0);
1928                                 block_t *pred_bl = get_block_entry(pred);
1929                                 int     need_phi = 0;
1930                                 memop_t *first   = NULL;
1931                                 ir_mode *mode    = NULL;
1932
1933                                 for (i = 0; i < n; ++i) {
1934                                         memop_t *mop;
1935
1936                                         pred    = get_Block_cfgpred_block(bl->block, i);
1937                                         pred_bl = get_block_entry(pred);
1938
1939                                         mop = pred_bl->id_2_memop_avail[pos];
1940                                         if (first == NULL) {
1941                                                 first = mop;
1942                                                 ins[0] = first->value.value;
1943                                                 mode = get_irn_mode(ins[0]);
1944
1945                                                 /* no Phi needed so far */
1946                                                 env.curr_id_2_memop[pos] = first;
1947                                         } else {
1948                                                 ins[i] = conv_to(mop->value.value, mode);
1949                                                 if (ins[i] != ins[0]) {
1950                                                         if (ins[i] == NULL) {
1951                                                                 /* conversion failed */
1952                                                                 env.curr_id_2_memop[pos] = NULL;
1953                                                                 rbitset_clear(env.curr_set, pos);
1954                                                                 break;
1955                                                         }
1956                                                         need_phi = 1;
1957                                                 }
1958                                         }
1959                                 }
1960                                 if (need_phi) {
1961                                         /* build a Phi  */
1962                                         ir_node *phi = new_r_Phi(bl->block, n, ins, mode);
1963                                         memop_t *phiop = alloc_memop(phi);
1964
1965                                         phiop->value = first->value;
1966                                         phiop->value.value = phi;
1967
1968                                         /* no need to link it in, as it is a DATA phi */
1969
1970                                         env.curr_id_2_memop[pos] = phiop;
1971
1972                                         DB((dbg, LEVEL_3, "Created new %+F on merging value for address %+F\n", phi, first->value.address));
1973                                 }
1974                         }
1975                 }
1976         } else {
1977                 /* only one predecessor, simply copy the map */
1978                 ir_node *pred    = get_Block_cfgpred_block(bl->block, 0);
1979                 block_t *pred_bl = get_block_entry(pred);
1980
1981                 rbitset_copy(env.curr_set, pred_bl->avail_out, env.rbs_size);
1982
1983                 memcpy(env.curr_id_2_memop, pred_bl->id_2_memop_avail, env.rbs_size * sizeof(bl->id_2_memop_avail[0]));
1984         }
1985
1986         if (n > 1) {
1987                 /* check for partly redundant values */
1988                 for (pos = rbitset_next(bl->anticL_in, 0, 1);
1989                      pos < end;
1990                      pos = rbitset_next(bl->anticL_in, pos + 1, 1)) {
1991                         memop_t *op = bl->id_2_memop_antic[pos];
1992                         int     have_some, all_same;
1993                         ir_node *first;
1994
1995                         if (rbitset_is_set(env.curr_set, pos)) {
1996                                 /* already avail */
1997                                 continue;
1998                         }
1999
2000                         assert(is_Load(op->node));
2001
2002                         DB((dbg, LEVEL_3, "anticipated %+F\n", op->node));
2003
2004                         have_some  = 0;
2005                         all_same   = 1;
2006                         first      = 0;
2007                         for (i = n - 1; i >= 0; --i) {
2008                                 ir_node *pred    = get_Block_cfgpred_block(block, i);
2009                                 block_t *pred_bl = get_block_entry(pred);
2010                                 ir_mode *mode    = op->value.mode;
2011                                 memop_t *e;
2012                                 ir_node *adr;
2013
2014                                 adr = phi_translate(op->value.address, block, i);
2015                                 DB((dbg, LEVEL_3, ".. using address %+F in pred %d\n", adr, i));
2016                                 e   = find_address_avail(pred_bl, register_address(adr), mode);
2017                                 if (e == NULL) {
2018                                         ir_node *ef_block = get_nodes_block(adr);
2019                                         if (! block_dominates(ef_block, pred)) {
2020                                                 /* cannot place a copy here */
2021                                                 have_some = 0;
2022                                                 DB((dbg, LEVEL_3, "%+F cannot be moved into predecessor %+F\n", op->node, pred));
2023                                                 break;
2024                                         }
2025                                         DB((dbg, LEVEL_3, "%+F is not available in predecessor %+F\n", op->node, pred));
2026                                         pred_bl->avail = NULL;
2027                                         all_same       = 0;
2028                                 } else {
2029                                         if (e->value.mode != mode && !can_convert_to(e->value.mode, mode)) {
2030                                                 /* cannot create a Phi due to different modes */
2031                                                 have_some = 0;
2032                                                 break;
2033                                         }
2034                                         pred_bl->avail = e;
2035                                         have_some      = 1;
2036                                         DB((dbg, LEVEL_3, "%+F is available for %+F in predecessor %+F\n", e->node, op->node, pred));
2037                                         if (first == NULL)
2038                                                 first = e->node;
2039                                         else if (first != e->node)
2040                                                 all_same = 0;
2041                                 }
2042                         }
2043                         if (have_some && !all_same) {
2044                                 ir_mode *mode = op->value.mode;
2045                                 ir_node **in, *phi;
2046                                 memop_t *phi_op;
2047
2048                                 NEW_ARR_A(ir_node *, in, n);
2049
2050                                 for (i = n - 1; i >= 0; --i) {
2051                                         ir_node *pred    = get_Block_cfgpred_block(block, i);
2052                                         block_t *pred_bl = get_block_entry(pred);
2053
2054                                         if (pred_bl->avail == NULL) {
2055                                                 /* create a new Load here and make to make it fully redundant */
2056                                                 dbg_info *db       = get_irn_dbg_info(op->node);
2057                                                 ir_node  *last_mem = find_last_memory(pred_bl);
2058                                                 ir_node  *load, *def, *adr;
2059                                                 memop_t  *new_op;
2060
2061                                                 assert(last_mem != NULL);
2062                                                 adr  = phi_translate(op->value.address, block, i);
2063                                                 load = new_rd_Load(db, pred, last_mem, adr, mode, cons_none);
2064                                                 def  = new_r_Proj(pred, load, mode, pn_Load_res);
2065                                                 DB((dbg, LEVEL_1, "Created new %+F in %+F for party redundant %+F\n", load, pred, op->node));
2066
2067                                                 new_op                = alloc_memop(load);
2068                                                 new_op->mem           = new_r_Proj(pred, load, mode_M, pn_Load_M);
2069                                                 new_op->value.address = adr;
2070                                                 new_op->value.id      = op->value.id;
2071                                                 new_op->value.mode    = mode;
2072                                                 new_op->value.value   = def;
2073
2074                                                 new_op->projs[pn_Load_M]   = new_op->mem;
2075                                                 new_op->projs[pn_Load_res] = def;
2076
2077                                                 new_op->prev = pred_bl->memop_backward;
2078                                                 if (pred_bl->memop_backward != NULL)
2079                                                         pred_bl->memop_backward->next = new_op;
2080
2081                                                 pred_bl->memop_backward = new_op;
2082
2083                                                 if (pred_bl->memop_forward == NULL)
2084                                                         pred_bl->memop_forward = new_op;
2085
2086                                                 if (get_nodes_block(last_mem) == pred) {
2087                                                         /* We have add a new last memory op in pred block.
2088                                                            If pred had already a last mem, reroute all memory
2089                                                            users. */
2090                                                         reroute_all_mem_users(last_mem, new_op->mem);
2091                                                 } else {
2092                                                         /* reroute only those memory going through the pre block */
2093                                                         reroute_mem_through(last_mem, new_op->mem, pred);
2094                                                 }
2095
2096                                                 /* we added this load at the end, so it will be avail anyway */
2097                                                 add_memop_avail(pred_bl, new_op);
2098                                                 pred_bl->avail = new_op;
2099                                         }
2100                                         in[i] = conv_to(pred_bl->avail->value.value, mode);
2101                                 }
2102                                 phi = new_r_Phi(block, n, in, mode);
2103                                 DB((dbg, LEVEL_1, "Created new %+F in %+F for now redundant %+F\n", phi, block, op->node));
2104
2105                                 phi_op = clone_memop_phi(op, phi);
2106                                 add_memop(phi_op);
2107                         }
2108                 }
2109         }
2110
2111         /* recalculate avail by gen and kill */
2112         calc_gen_kill_avail(bl);
2113
2114         /* always update the map after gen/kill, as values might have been changed due to RAR/WAR/WAW */
2115         memcpy(bl->id_2_memop_avail, env.curr_id_2_memop, env.rbs_size * sizeof(env.curr_id_2_memop[0]));
2116
2117         if (!rbitset_equal(bl->avail_out, env.curr_set, env.rbs_size)) {
2118                 /* the avail set has changed */
2119                 rbitset_copy(bl->avail_out, env.curr_set, env.rbs_size);
2120                 dump_curr(bl, "Avail_out*");
2121                 return 1;
2122         }
2123         dump_curr(bl, "Avail_out");
2124         return 0;
2125 }  /* insert_Load */
2126
2127 /**
2128  * Insert Loads upwards.
2129  */
2130 static void insert_Loads_upwards(void) {
2131         int i, need_iter;
2132         block_t *bl;
2133
2134         /* recalculate antic_out and insert Loads */
2135         DB((dbg, LEVEL_2, "Inserting Loads\n"));
2136
2137         i = 0;
2138         do {
2139                 DB((dbg, LEVEL_2, "Iteration %d:\n=========\n", i));
2140
2141                 need_iter = 0;
2142
2143                 /* over all blocks in reverse post order, skip the start block */
2144                 for (bl = env.forward->forward_next; bl != NULL; bl = bl->forward_next) {
2145                         need_iter |= insert_Load(bl);
2146                 }
2147                 ++i;
2148         } while (need_iter);
2149
2150         DB((dbg, LEVEL_2, "Finished Load inserting after %d iterations\n", i));
2151 }  /* insert_Loads_upwards */
2152
2153 /**
2154  * Kill unreachable control flow.
2155  *
2156  * @param irg  the graph to operate on
2157  */
2158 static void kill_unreachable_blocks(ir_graph *irg) {
2159         block_t *bl;
2160         ir_node **ins;
2161         int     changed = 0;
2162
2163         NEW_ARR_A(ir_node *, ins, env.max_cfg_preds);
2164
2165         for (bl = env.forward; bl != NULL; bl = bl->forward_next) {
2166                 ir_node *block = bl->block;
2167                 int     i, j, k, n;
2168
2169                 assert(get_Block_mark(block));
2170
2171                 n = get_Block_n_cfgpreds(block);
2172
2173                 for (i = j = 0; i < n; ++i) {
2174                         ir_node *pred = get_Block_cfgpred(block, i);
2175                         ir_node *pred_bl;
2176
2177                         if (is_Bad(pred))
2178                                 continue;
2179
2180                         pred_bl = get_nodes_block(skip_Proj(pred));
2181                         if (! get_Block_mark(pred_bl))
2182                                 continue;
2183
2184                         ins[j++] = pred;
2185                 }
2186                 if (j != n) {
2187                         ir_node *phi, *next;
2188
2189                         /* some unreachable blocks detected */
2190                         changed = 1;
2191
2192                         DB((dbg, LEVEL_1, "Killing dead block predecessors on %+F\n", block));
2193
2194                         set_irn_in(block, j, ins);
2195
2196                         /* shorten all Phi nodes */
2197                         for (phi = get_Block_phis(block); phi != NULL; phi = next) {
2198                                 next = get_Phi_next(phi);
2199
2200                                 for (i = k = 0; i < n; ++i) {
2201                                         ir_node *pred = get_Block_cfgpred_block(block, i);
2202
2203                                         if (is_Bad(pred))
2204                                                 continue;
2205
2206                                         if (! get_Block_mark(pred))
2207                                                 continue;
2208
2209                                         ins[k++] = get_Phi_pred(phi, i);
2210                                 }
2211                                 if (k == 1)
2212                                         exchange(phi, ins[0]);
2213                                 else
2214                                         set_irn_in(phi, k, ins);
2215                         }
2216                 }
2217
2218         }
2219
2220         if (changed) {
2221                 /* kick keep alives */
2222                 ir_node *end = get_irg_end(irg);
2223                 int     i, j, n = get_End_n_keepalives(end);
2224
2225                 NEW_ARR_A(ir_node *, ins, n);
2226
2227                 for (i = j = 0; i < n; ++i) {
2228                         ir_node *ka = get_End_keepalive(end, i);
2229                         ir_node *ka_bl;
2230
2231                         if (is_Bad(ka))
2232                                 continue;
2233                         if (is_Block(ka))
2234                                 ka_bl = ka;
2235                         else
2236                                 ka_bl = get_nodes_block(skip_Proj(ka));
2237                         if (get_Block_mark(ka_bl))
2238                                 ins[j++] = ka;
2239                 }
2240                 if (j != n)
2241                         set_End_keepalives(end, j, ins);
2242
2243                 free_irg_outs(irg);
2244
2245                 /* this transformation do NOT invalidate the dominance */
2246         }
2247 }  /* kill_unreachable_blocks */
2248
2249 int opt_ldst(ir_graph *irg) {
2250         block_t  *bl;
2251         ir_graph *rem = current_ir_graph;
2252
2253         current_ir_graph = irg;
2254
2255         FIRM_DBG_REGISTER(dbg, "firm.opt.ldst");
2256 //      firm_dbg_set_mask(dbg, -1);
2257
2258         DB((dbg, LEVEL_1, "\nDoing Load/Store optimization on %+F\n", irg));
2259
2260         /* we need landing pads */
2261         remove_critical_cf_edges(irg);
2262
2263 //      dump_ir_block_graph(irg, "-XXX");
2264
2265         if (get_opt_alias_analysis()) {
2266                 assure_irg_entity_usage_computed(irg);
2267                 assure_irp_globals_entity_usage_computed();
2268         }
2269
2270         obstack_init(&env.obst);
2271         ir_nodemap_init(&env.adr_map);
2272
2273         env.forward       = NULL;
2274         env.backward      = NULL;
2275         env.curr_adr_id   = 0;
2276         env.n_mem_ops     = 0;
2277         env.max_cfg_preds = 0;
2278         env.changed       = 0;
2279         env.start_bl      = get_irg_start_block(irg);
2280         env.end_bl        = get_irg_end_block(irg);
2281 #ifdef DEBUG_libfirm
2282         env.id_2_address  = NEW_ARR_F(ir_node *, 0);
2283 #endif
2284
2285         assure_irg_outs(irg);
2286
2287         ir_reserve_resources(irg, IR_RESOURCE_IRN_LINK | IR_RESOURCE_BLOCK_MARK);
2288
2289         /* first step: allocate block entries. Note that some blocks might be
2290            unreachable here. Using the normal walk ensures that ALL blocks are initialized. */
2291         irg_walk_graph(irg, prepare_blocks, link_phis, NULL);
2292
2293         /* produce an inverse post-order list for the CFG: this links only reachable
2294            blocks */
2295         irg_out_block_walk(get_irg_start_block(irg), NULL, inverse_post_order, NULL);
2296
2297         if (! get_Block_mark(env.end_bl)) {
2298                 /*
2299                  * The end block is NOT reachable due to endless loops
2300                  * or no_return calls.
2301                  * Place the end block last.
2302                  * env.backward points to the last block in the list for this purpose.
2303                  */
2304                 env.backward->forward_next = get_block_entry(env.end_bl);
2305
2306                 set_Block_mark(env.end_bl, 1);
2307         }
2308
2309         /* KILL unreachable blocks: these disturb the data flow analysis */
2310         kill_unreachable_blocks(irg);
2311
2312         assure_doms(irg);
2313
2314         /* second step: find and sort all memory ops */
2315         walk_memory_irg(irg, collect_memops, NULL, NULL);
2316
2317 #ifdef DEBUG_libfirm
2318         /* check that the backward map is correct */
2319         assert((unsigned)ARR_LEN(env.id_2_address) == env.curr_adr_id);
2320 #endif
2321
2322         if (env.n_mem_ops == 0) {
2323                 /* no memory ops */
2324                 goto end;
2325         }
2326
2327         /* create the backward links. */
2328         env.backward = NULL;
2329         irg_block_walk_graph(irg, NULL, collect_backward, NULL);
2330
2331         /* link the end block in */
2332         bl = get_block_entry(env.end_bl);
2333         bl->backward_next = env.backward;
2334         env.backward      = bl;
2335
2336         /* check that we really start with the start / end block */
2337         assert(env.forward->block  == env.start_bl);
2338         assert(env.backward->block == env.end_bl);
2339
2340         /* create address sets: for now, only the existing addresses are allowed plus one
2341            needed for the sentinel */
2342         env.rbs_size = env.curr_adr_id + 1;
2343
2344         /* create the current set */
2345         env.curr_set = rbitset_obstack_alloc(&env.obst, env.rbs_size);
2346         rbitset_set(env.curr_set, env.rbs_size - 1);
2347         env.curr_id_2_memop = NEW_ARR_D(memop_t *, &env.obst, env.rbs_size);
2348         memset(env.curr_id_2_memop, 0, env.rbs_size * sizeof(env.curr_id_2_memop[0]));
2349
2350         for (bl = env.forward; bl != NULL; bl = bl->forward_next) {
2351                 /* set sentinel bits */
2352                 bl->avail_out  = rbitset_obstack_alloc(&env.obst, env.rbs_size);
2353                 rbitset_set(bl->avail_out, env.rbs_size - 1);
2354
2355                 bl->id_2_memop_avail = NEW_ARR_D(memop_t *, &env.obst, env.rbs_size);
2356                 memset(bl->id_2_memop_avail, 0, env.rbs_size * sizeof(bl->id_2_memop_avail[0]));
2357
2358                 bl->anticL_in  = rbitset_obstack_alloc(&env.obst, env.rbs_size);
2359                 rbitset_set(bl->anticL_in, env.rbs_size - 1);
2360
2361                 bl->id_2_memop_antic = NEW_ARR_D(memop_t *, &env.obst, env.rbs_size);
2362                 memset(bl->id_2_memop_antic, 0, env.rbs_size * sizeof(bl->id_2_memop_antic[0]));
2363         }
2364
2365 //      dump_block_list(&env);
2366         (void) dump_block_list;
2367
2368         calcAvail();
2369         calcAntic();
2370
2371         insert_Loads_upwards();
2372
2373         if (env.changed) {
2374                 /* over all blocks in reverse post order */
2375                 for (bl = env.forward; bl != NULL; bl = bl->forward_next) {
2376                         do_replacements(bl);
2377                 }
2378
2379                 /* not only invalidate but free them. We might allocate new out arrays
2380                    on our obstack which will be deleted yet. */
2381                 free_irg_outs(irg);
2382                 set_irg_entity_usage_state(irg, ir_entity_usage_not_computed);
2383         }
2384 end:
2385
2386         ir_free_resources(irg, IR_RESOURCE_IRN_LINK | IR_RESOURCE_BLOCK_MARK);
2387         ir_nodemap_destroy(&env.adr_map);
2388         obstack_free(&env.obst, NULL);
2389
2390 //      dump_ir_block_graph(irg, "-YYY");
2391
2392 #ifdef DEBUG_libfirm
2393         DEL_ARR_F(env.id_2_address);
2394 #endif
2395
2396         current_ir_graph = rem;
2397         return env.changed != 0;
2398 }  /* opt_ldst */
2399
2400 ir_graph_pass_t *opt_ldst_pass(const char *name)
2401 {
2402         return def_graph_pass_ret(name ? name : "ldst_df", opt_ldst);
2403 }  /* opt_ldst_pass */