avoid new_NoMem in favor or get_irg_no_mem
[libfirm] / ir / kaps / optimal.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Optimal reductions and helper functions.
23  * @date    28.12.2009
24  * @author  Sebastian Buchwald
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "adt/array.h"
30 #include "assert.h"
31 #include "error.h"
32
33 #include "bucket.h"
34 #if KAPS_DUMP
35 #include "html_dumper.h"
36 #endif
37 #include "kaps.h"
38 #include "matrix.h"
39 #include "optimal.h"
40 #include "pbqp_edge.h"
41 #include "pbqp_edge_t.h"
42 #include "pbqp_node.h"
43 #include "pbqp_node_t.h"
44 #include "vector.h"
45
46 #include "plist.h"
47 #include "timing.h"
48
49 pbqp_edge_t **edge_bucket;
50 pbqp_edge_t **rm_bucket;
51 pbqp_node_t **node_buckets[4];
52 pbqp_node_t **reduced_bucket = NULL;
53 pbqp_node_t  *merged_node = NULL;
54 static int  buckets_filled = 0;
55
56 static void insert_into_edge_bucket(pbqp_edge_t *edge)
57 {
58         if (edge_bucket_contains(edge_bucket, edge)) {
59                 /* Edge is already inserted. */
60                 return;
61         }
62
63         edge_bucket_insert(&edge_bucket, edge);
64 }
65
66 static void insert_into_rm_bucket(pbqp_edge_t *edge)
67 {
68         if (edge_bucket_contains(rm_bucket, edge)) {
69                 /* Edge is already inserted. */
70                 return;
71         }
72
73         edge_bucket_insert(&rm_bucket, edge);
74 }
75
76 static void init_buckets(void)
77 {
78         int i;
79
80         edge_bucket_init(&edge_bucket);
81         edge_bucket_init(&rm_bucket);
82         node_bucket_init(&reduced_bucket);
83
84         for (i = 0; i < 4; ++i) {
85                 node_bucket_init(&node_buckets[i]);
86         }
87 }
88
89 void free_buckets(void)
90 {
91         int i;
92
93         for (i = 0; i < 4; ++i) {
94                 node_bucket_free(&node_buckets[i]);
95         }
96
97         edge_bucket_free(&edge_bucket);
98         edge_bucket_free(&rm_bucket);
99         node_bucket_free(&reduced_bucket);
100
101         buckets_filled = 0;
102 }
103
104 void fill_node_buckets(pbqp_t *pbqp)
105 {
106         unsigned node_index;
107         unsigned node_len;
108
109         node_len = pbqp->num_nodes;
110
111         #if KAPS_TIMING
112                 ir_timer_t *t_fill_buckets = ir_timer_new();
113                 ir_timer_start(t_fill_buckets);
114         #endif
115
116         for (node_index = 0; node_index < node_len; ++node_index) {
117                 unsigned     degree;
118                 pbqp_node_t *node = get_node(pbqp, node_index);
119
120                 if (!node) continue;
121
122                 degree = pbqp_node_get_degree(node);
123
124                 /* We have only one bucket for nodes with arity >= 3. */
125                 if (degree > 3) {
126                         degree = 3;
127                 }
128
129                 node_bucket_insert(&node_buckets[degree], node);
130         }
131
132         buckets_filled = 1;
133
134         #if KAPS_TIMING
135                 ir_timer_stop(t_fill_buckets);
136                 printf("PBQP Fill Nodes into buckets: %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_fill_buckets) / 1000.0);
137         #endif
138 }
139
140 static void normalize_towards_source(pbqp_edge_t *edge)
141 {
142         pbqp_matrix_t  *mat;
143         pbqp_node_t    *src_node;
144         pbqp_node_t    *tgt_node;
145         vector_t       *src_vec;
146         vector_t       *tgt_vec;
147         unsigned        src_len;
148         unsigned        tgt_len;
149         unsigned        src_index;
150         unsigned        new_infinity = 0;
151
152         src_node = edge->src;
153         tgt_node = edge->tgt;
154
155         src_vec = src_node->costs;
156         tgt_vec = tgt_node->costs;
157
158         src_len = src_vec->len;
159         tgt_len = tgt_vec->len;
160         assert(src_len > 0);
161         assert(tgt_len > 0);
162
163         mat = edge->costs;
164
165         /* Normalize towards source node. */
166         for (src_index = 0; src_index < src_len; ++src_index) {
167                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
168
169                 if (min != 0) {
170                         if (src_vec->entries[src_index].data == INF_COSTS) {
171                                 pbqp_matrix_set_row_value(mat, src_index, 0);
172                                 continue;
173                         }
174
175                         pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
176                         src_vec->entries[src_index].data = pbqp_add(
177                                         src_vec->entries[src_index].data, min);
178
179                         if (min == INF_COSTS) {
180                                 new_infinity = 1;
181                         }
182                 }
183         }
184
185         if (new_infinity) {
186                 unsigned edge_index;
187                 unsigned edge_len = pbqp_node_get_degree(src_node);
188
189                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
190                         pbqp_edge_t *edge_candidate = src_node->edges[edge_index];
191
192                         if (edge_candidate != edge) {
193                                 insert_into_edge_bucket(edge_candidate);
194                         }
195                 }
196         }
197 }
198
199 static void normalize_towards_target(pbqp_edge_t *edge)
200 {
201         pbqp_matrix_t  *mat;
202         pbqp_node_t    *src_node;
203         pbqp_node_t    *tgt_node;
204         vector_t       *src_vec;
205         vector_t       *tgt_vec;
206         unsigned        src_len;
207         unsigned        tgt_len;
208         unsigned        tgt_index;
209         unsigned        new_infinity = 0;
210
211         src_node = edge->src;
212         tgt_node = edge->tgt;
213
214         src_vec = src_node->costs;
215         tgt_vec = tgt_node->costs;
216
217         src_len = src_vec->len;
218         tgt_len = tgt_vec->len;
219         assert(src_len > 0);
220         assert(tgt_len > 0);
221
222         mat = edge->costs;
223
224         /* Normalize towards target node. */
225         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
226                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
227
228                 if (min != 0) {
229                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
230                                 pbqp_matrix_set_col_value(mat, tgt_index, 0);
231                                 continue;
232                         }
233
234                         pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
235                         tgt_vec->entries[tgt_index].data = pbqp_add(
236                                         tgt_vec->entries[tgt_index].data, min);
237
238                         if (min == INF_COSTS) {
239                                 new_infinity = 1;
240                         }
241                 }
242         }
243
244         if (new_infinity) {
245                 unsigned edge_index;
246                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
247
248                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
249                         pbqp_edge_t *edge_candidate = tgt_node->edges[edge_index];
250
251                         if (edge_candidate != edge) {
252                                 insert_into_edge_bucket(edge_candidate);
253                         }
254                 }
255         }
256 }
257
258 /**
259  * Tries to apply RM for the source node of the given edge.
260  *
261  * Checks whether the source node of edge can be merged into the target node of
262  * edge, and performs the merge, if possible.
263  */
264 static void merge_source_into_target(pbqp_t *pbqp, pbqp_edge_t *edge)
265 {
266         pbqp_matrix_t  *mat;
267         pbqp_node_t    *src_node;
268         pbqp_node_t    *tgt_node;
269         vector_t       *src_vec;
270         vector_t       *tgt_vec;
271         unsigned       *mapping;
272         unsigned        src_len;
273         unsigned        tgt_len;
274         unsigned        src_index;
275         unsigned        tgt_index;
276         unsigned        edge_index;
277         unsigned        edge_len;
278
279         src_node = edge->src;
280         tgt_node = edge->tgt;
281
282         src_vec = src_node->costs;
283         tgt_vec = tgt_node->costs;
284
285         src_len = src_vec->len;
286         tgt_len = tgt_vec->len;
287
288         /* Matrizes are normalized. */
289         assert(src_len > 1);
290         assert(tgt_len > 1);
291
292         mat = edge->costs;
293
294         mapping = NEW_ARR_F(unsigned, tgt_len);
295
296         /* Check that each column has at most one zero entry. */
297         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
298                 unsigned onlyOneZero = 0;
299
300                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
301                         continue;
302
303                 for (src_index = 0; src_index < src_len; ++src_index) {
304                         if (src_vec->entries[src_index].data == INF_COSTS)
305                                 continue;
306
307                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
308                                 continue;
309
310                         /* Matrix entry is finite. */
311                         if (onlyOneZero) {
312                                 DEL_ARR_F(mapping);
313                                 return;
314                         }
315
316                         onlyOneZero = 1;
317                         mapping[tgt_index] = src_index;
318                 }
319         }
320
321         /* We know that we can merge the source node into the target node. */
322         edge_len = pbqp_node_get_degree(src_node);
323
324 #if KAPS_STATISTIC
325         pbqp->num_rm++;
326 #endif
327
328 #if KAPS_DUMP
329         if (pbqp->dump_file) {
330                 char txt[100];
331                 sprintf(txt, "Merging n%d into n%d", src_node->index, tgt_node->index);
332                 dump_section(pbqp->dump_file, 3, txt);
333         }
334 #endif
335
336         /* Reconnect the source's edges with the target node. */
337         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
338                 pbqp_edge_t   *old_edge = src_node->edges[edge_index];
339                 pbqp_edge_t   *new_edge;
340                 pbqp_matrix_t *old_matrix;
341                 pbqp_matrix_t *new_matrix;
342                 pbqp_node_t   *other_node;
343                 vector_t      *other_vec;
344                 unsigned       other_len;
345                 unsigned       other_index;
346                 unsigned       tgt_index;
347
348                 assert(old_edge);
349                 if (old_edge == edge)
350                         continue;
351
352                 old_matrix = old_edge->costs;
353
354                 if (old_edge->tgt == src_node) {
355                         other_node = old_edge->src;
356                         other_len  = old_matrix->rows;
357                 }
358                 else {
359                         other_node = old_edge->tgt;
360                         other_len = old_matrix->cols;
361                 }
362                 other_vec = other_node->costs;
363
364                 new_matrix = pbqp_matrix_alloc(pbqp, tgt_len, other_len);
365
366                 /* Source node selects the column of the old_matrix. */
367                 if (old_edge->tgt == src_node) {
368                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
369                                 unsigned src_index = mapping[tgt_index];
370
371                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
372                                         continue;
373
374                                 for (other_index = 0; other_index < other_len; ++other_index) {
375                                         if (other_vec->entries[other_index].data == INF_COSTS)
376                                                 continue;
377
378                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[other_index*src_len+src_index];
379                                 }
380                         }
381                 }
382                 /* Source node selects the row of the old_matrix. */
383                 else {
384                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
385                                 unsigned src_index = mapping[tgt_index];
386
387                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
388                                         continue;
389
390                                 for (other_index = 0; other_index < other_len; ++other_index) {
391                                         if (other_vec->entries[other_index].data == INF_COSTS)
392                                                 continue;
393
394                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[src_index*other_len+other_index];
395                                 }
396                         }
397                 }
398
399                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
400
401                 add_edge_costs(pbqp, tgt_node->index, other_node->index, new_matrix);
402
403                 if (new_edge == NULL) {
404                         reorder_node_after_edge_insertion(tgt_node);
405                         reorder_node_after_edge_insertion(other_node);
406                 }
407
408                 delete_edge(old_edge);
409
410                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
411                 simplify_edge(pbqp, new_edge);
412
413                 insert_into_rm_bucket(new_edge);
414         }
415
416 #if KAPS_STATISTIC
417         pbqp->num_r1--;
418 #endif
419 }
420
421 /**
422  * Tries to apply RM for the target node of the given edge.
423  *
424  * Checks whether the target node of edge can be merged into the source node of
425  * edge, and performs the merge, if possible.
426  */
427 static void merge_target_into_source(pbqp_t *pbqp, pbqp_edge_t *edge)
428 {
429         pbqp_matrix_t  *mat;
430         pbqp_node_t    *src_node;
431         pbqp_node_t    *tgt_node;
432         vector_t       *src_vec;
433         vector_t       *tgt_vec;
434         unsigned       *mapping;
435         unsigned        src_len;
436         unsigned        tgt_len;
437         unsigned        src_index;
438         unsigned        tgt_index;
439         unsigned        edge_index;
440         unsigned        edge_len;
441
442         src_node = edge->src;
443         tgt_node = edge->tgt;
444
445         src_vec = src_node->costs;
446         tgt_vec = tgt_node->costs;
447
448         src_len = src_vec->len;
449         tgt_len = tgt_vec->len;
450
451         /* Matrizes are normalized. */
452         assert(src_len > 1);
453         assert(tgt_len > 1);
454
455         mat = edge->costs;
456
457         mapping = NEW_ARR_F(unsigned, src_len);
458
459         /* Check that each row has at most one zero entry. */
460         for (src_index = 0; src_index < src_len; ++src_index) {
461                 unsigned onlyOneZero = 0;
462
463                 if (src_vec->entries[src_index].data == INF_COSTS)
464                         continue;
465
466                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
467                         if (tgt_vec->entries[tgt_index].data == INF_COSTS)
468                                 continue;
469
470                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
471                                 continue;
472
473                         /* Matrix entry is finite. */
474                         if (onlyOneZero) {
475                                 DEL_ARR_F(mapping);
476                                 return;
477                         }
478
479                         onlyOneZero = 1;
480                         mapping[src_index] = tgt_index;
481                 }
482         }
483
484         /* We know that we can merge the target node into the source node. */
485         edge_len = pbqp_node_get_degree(tgt_node);
486
487 #if KAPS_STATISTIC
488         pbqp->num_rm++;
489 #endif
490
491 #if KAPS_DUMP
492         if (pbqp->dump_file) {
493                 char txt[100];
494                 sprintf(txt, "Merging n%d into n%d", tgt_node->index, src_node->index);
495                 dump_section(pbqp->dump_file, 3, txt);
496         }
497 #endif
498
499         /* Reconnect the target's edges with the source node. */
500         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
501                 pbqp_edge_t   *old_edge = tgt_node->edges[edge_index];
502                 pbqp_edge_t   *new_edge;
503                 pbqp_matrix_t *old_matrix;
504                 pbqp_matrix_t *new_matrix;
505                 pbqp_node_t   *other_node;
506                 vector_t      *other_vec;
507                 unsigned       other_len;
508                 unsigned       other_index;
509                 unsigned       src_index;
510
511                 assert(old_edge);
512
513                 if (old_edge == edge)
514                         continue;
515
516                 old_matrix = old_edge->costs;
517
518                 if (old_edge->tgt == tgt_node) {
519                         other_node = old_edge->src;
520                         other_len  = old_matrix->rows;
521                 }
522                 else {
523                         other_node = old_edge->tgt;
524                         other_len = old_matrix->cols;
525                 }
526                 other_vec = other_node->costs;
527
528                 new_matrix = pbqp_matrix_alloc(pbqp, src_len, other_len);
529
530                 /* Target node selects the column of the old_matrix. */
531                 if (old_edge->tgt == tgt_node) {
532                         for (src_index = 0; src_index < src_len; ++src_index) {
533                                 unsigned tgt_index = mapping[src_index];
534
535                                 if (src_vec->entries[src_index].data == INF_COSTS)
536                                         continue;
537
538                                 for (other_index = 0; other_index < other_len; ++other_index) {
539                                         if (other_vec->entries[other_index].data == INF_COSTS)
540                                                 continue;
541
542                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[other_index*tgt_len+tgt_index];
543                                 }
544                         }
545                 }
546                 /* Source node selects the row of the old_matrix. */
547                 else {
548                         for (src_index = 0; src_index < src_len; ++src_index) {
549                                 unsigned tgt_index = mapping[src_index];
550
551                                 if (src_vec->entries[src_index].data == INF_COSTS)
552                                         continue;
553
554                                 for (other_index = 0; other_index < other_len; ++other_index) {
555                                         if (other_vec->entries[other_index].data == INF_COSTS)
556                                                 continue;
557
558                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[tgt_index*other_len+other_index];
559                                 }
560                         }
561                 }
562
563                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
564
565                 add_edge_costs(pbqp, src_node->index, other_node->index, new_matrix);
566
567                 if (new_edge == NULL) {
568                         reorder_node_after_edge_insertion(src_node);
569                         reorder_node_after_edge_insertion(other_node);
570                 }
571
572                 delete_edge(old_edge);
573
574                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
575                 simplify_edge(pbqp, new_edge);
576
577                 insert_into_rm_bucket(new_edge);
578         }
579
580 #if KAPS_STATISTIC
581         pbqp->num_r1--;
582 #endif
583 }
584
585 /**
586  * Merge neighbors into the given node.
587  */
588 void apply_RM(pbqp_t *pbqp, pbqp_node_t *node)
589 {
590         pbqp_edge_t **edges;
591         unsigned      edge_index;
592         unsigned      edge_len;
593
594         edges    = node->edges;
595         edge_len = pbqp_node_get_degree(node);
596
597         /* Check all incident edges. */
598         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
599                 pbqp_edge_t *edge = edges[edge_index];
600
601                 insert_into_rm_bucket(edge);
602         }
603
604         /* ALAP: Merge neighbors into given node. */
605         while(edge_bucket_get_length(rm_bucket) > 0) {
606                 pbqp_edge_t *edge = edge_bucket_pop(&rm_bucket);
607
608                 /* If the edge is not deleted: Try a merge. */
609                 if (edge->src == node)
610                         merge_target_into_source(pbqp, edge);
611                 else if (edge->tgt == node)
612                         merge_source_into_target(pbqp, edge);
613         }
614
615         merged_node = node;
616 }
617
618 void reorder_node_after_edge_deletion(pbqp_node_t *node)
619 {
620         unsigned    degree     = pbqp_node_get_degree(node);
621         /* Assume node lost one incident edge. */
622         unsigned    old_degree = degree + 1;
623
624         if (!buckets_filled) return;
625
626         /* Same bucket as before */
627         if (degree > 2) return;
628
629         /* Delete node from old bucket... */
630         node_bucket_remove(&node_buckets[old_degree], node);
631
632         /* ..and add to new one. */
633         node_bucket_insert(&node_buckets[degree], node);
634 }
635
636 void reorder_node_after_edge_insertion(pbqp_node_t *node)
637 {
638         unsigned    degree     = pbqp_node_get_degree(node);
639         /* Assume node lost one incident edge. */
640         unsigned    old_degree = degree - 1;
641
642         if (!buckets_filled) return;
643
644         /* Same bucket as before */
645         if (old_degree > 2) return;
646
647         /* Delete node from old bucket... */
648         node_bucket_remove(&node_buckets[old_degree], node);
649
650         /* ..and add to new one. */
651         node_bucket_insert(&node_buckets[degree], node);
652 }
653
654 void simplify_edge(pbqp_t *pbqp, pbqp_edge_t *edge)
655 {
656         pbqp_matrix_t *mat;
657         pbqp_node_t   *src_node;
658         pbqp_node_t   *tgt_node;
659         vector_t      *src_vec;
660         vector_t      *tgt_vec;
661         int            src_len;
662         int            tgt_len;
663
664         (void) pbqp;
665
666         src_node = edge->src;
667         tgt_node = edge->tgt;
668         assert(src_node);
669         assert(tgt_node);
670
671         /* If edge are already deleted, we have nothing to do. */
672         if (is_deleted(edge))
673                 return;
674
675 #if KAPS_DUMP
676         if (pbqp->dump_file) {
677                 char txt[100];
678                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
679                 dump_section(pbqp->dump_file, 3, txt);
680         }
681 #endif
682
683         src_vec = src_node->costs;
684         tgt_vec = tgt_node->costs;
685
686         src_len = src_vec->len;
687         tgt_len = tgt_vec->len;
688         assert(src_len > 0);
689         assert(tgt_len > 0);
690
691         mat = edge->costs;
692
693 #if KAPS_DUMP
694         if (pbqp->dump_file) {
695                 fputs("Input:<br>\n", pbqp->dump_file);
696                 dump_simplifyedge(pbqp, edge);
697         }
698 #endif
699
700         normalize_towards_source(edge);
701         normalize_towards_target(edge);
702
703 #if KAPS_DUMP
704         if (pbqp->dump_file) {
705                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
706                 dump_simplifyedge(pbqp, edge);
707         }
708 #endif
709
710         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
711 #if KAPS_DUMP
712                 if (pbqp->dump_file) {
713                         fputs("edge has been eliminated<br>\n", pbqp->dump_file);
714                 }
715 #endif
716
717 #if KAPS_STATISTIC
718                 pbqp->num_edges++;
719 #endif
720
721                 delete_edge(edge);
722         }
723 }
724
725 void initial_simplify_edges(pbqp_t *pbqp)
726 {
727         unsigned node_index;
728         unsigned node_len;
729
730         #if KAPS_TIMING
731                 ir_timer_t *t_int_simpl = ir_timer_new();
732                 ir_timer_start(t_int_simpl);
733         #endif
734
735 #if KAPS_DUMP
736         if (pbqp->dump_file) {
737                 pbqp_dump_input(pbqp);
738                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
739         }
740 #endif
741
742         node_len = pbqp->num_nodes;
743
744         init_buckets();
745
746         /* First simplify all edges. */
747         for (node_index = 0; node_index < node_len; ++node_index) {
748                 unsigned      edge_index;
749                 pbqp_node_t  *node = get_node(pbqp, node_index);
750                 pbqp_edge_t **edges;
751                 unsigned      edge_len;
752
753                 if (!node) continue;
754
755                 edges = node->edges;
756                 edge_len = pbqp_node_get_degree(node);
757
758                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
759                         pbqp_edge_t *edge = edges[edge_index];
760
761                         /* Simplify only once per edge. */
762                         if (node != edge->src) continue;
763
764                         simplify_edge(pbqp, edge);
765                 }
766         }
767
768         #if KAPS_TIMING
769                 ir_timer_stop(t_int_simpl);
770                 printf("PBQP Initial simplify edges:  %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_int_simpl) / 1000.0);
771         #endif
772 }
773
774 num determine_solution(pbqp_t *pbqp)
775 {
776         unsigned node_index;
777         unsigned node_len;
778         num      solution   = 0;
779
780         #if KAPS_TIMING
781                 ir_timer_t *t_det_solution = ir_timer_new();
782                 ir_timer_reset_and_start(t_det_solution);
783         #endif
784
785 #if KAPS_DUMP
786         FILE     *file;
787 #endif
788
789         (void) pbqp;
790
791 #if KAPS_DUMP
792         file = pbqp->dump_file;
793
794         if (file) {
795                 dump_section(file, 1, "4. Determine Solution/Minimum");
796                 dump_section(file, 2, "4.1. Trivial Solution");
797         }
798 #endif
799
800         /* Solve trivial nodes and calculate solution. */
801         node_len = node_bucket_get_length(node_buckets[0]);
802
803 #if KAPS_STATISTIC
804         pbqp->num_r0 = node_len;
805 #endif
806
807         for (node_index = 0; node_index < node_len; ++node_index) {
808                 pbqp_node_t *node = node_buckets[0][node_index];
809
810                 node->solution = vector_get_min_index(node->costs);
811                 solution       = pbqp_add(solution,
812                                 node->costs->entries[node->solution].data);
813
814 #if KAPS_DUMP
815                 if (file) {
816                         fprintf(file, "node n%d is set to %d<br>\n", node->index, node->solution);
817                         dump_node(file, node);
818                 }
819 #endif
820         }
821
822 #if KAPS_DUMP
823         if (file) {
824                 dump_section(file, 2, "Minimum");
825 #if KAPS_USE_UNSIGNED
826                 fprintf(file, "Minimum is equal to %u.", solution);
827 #else
828                 fprintf(file, "Minimum is equal to %lld.", solution);
829 #endif
830         }
831 #endif
832
833         #if KAPS_TIMING
834                 ir_timer_stop(t_det_solution);
835                 printf("PBQP Determine Solution:      %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_det_solution) / 1000.0);
836         #endif
837
838         return solution;
839 }
840
841 static void back_propagate_RI(pbqp_t *pbqp, pbqp_node_t *node)
842 {
843         pbqp_edge_t   *edge;
844         pbqp_node_t   *other;
845         pbqp_matrix_t *mat;
846         vector_t      *vec;
847         int            is_src;
848         (void) pbqp;
849
850         edge = node->edges[0];
851         mat = edge->costs;
852         is_src = edge->src == node;
853         vec = node->costs;
854
855         if (is_src) {
856                 other = edge->tgt;
857                 node->solution = pbqp_matrix_get_col_min_index(mat, other->solution, vec);
858         } else {
859                 other = edge->src;
860                 node->solution = pbqp_matrix_get_row_min_index(mat, other->solution, vec);
861         }
862
863 #if KAPS_DUMP
864         if (pbqp->dump_file) {
865                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
866         }
867 #endif
868 }
869
870 static void back_propagate_RII(pbqp_t *pbqp, pbqp_node_t *node)
871 {
872         pbqp_edge_t   *src_edge   = node->edges[0];
873         pbqp_edge_t   *tgt_edge   = node->edges[1];
874         int            src_is_src = src_edge->src == node;
875         int            tgt_is_src = tgt_edge->src == node;
876         pbqp_matrix_t *src_mat;
877         pbqp_matrix_t *tgt_mat;
878         pbqp_node_t   *src_node;
879         pbqp_node_t   *tgt_node;
880         vector_t      *vec;
881         vector_t      *node_vec;
882         unsigned       col_index;
883         unsigned       row_index;
884
885         if (src_is_src) {
886                 src_node = src_edge->tgt;
887         } else {
888                 src_node = src_edge->src;
889         }
890
891         if (tgt_is_src) {
892                 tgt_node = tgt_edge->tgt;
893         } else {
894                 tgt_node = tgt_edge->src;
895         }
896
897         /* Swap nodes if necessary. */
898         if (tgt_node->index < src_node->index) {
899                 pbqp_node_t *tmp_node;
900                 pbqp_edge_t *tmp_edge;
901
902                 tmp_node = src_node;
903                 src_node = tgt_node;
904                 tgt_node = tmp_node;
905
906                 tmp_edge = src_edge;
907                 src_edge = tgt_edge;
908                 tgt_edge = tmp_edge;
909
910                 src_is_src = src_edge->src == node;
911                 tgt_is_src = tgt_edge->src == node;
912         }
913
914         src_mat = src_edge->costs;
915         tgt_mat = tgt_edge->costs;
916
917         node_vec = node->costs;
918
919         row_index = src_node->solution;
920         col_index = tgt_node->solution;
921
922         vec = vector_copy(pbqp, node_vec);
923
924         if (src_is_src) {
925                 vector_add_matrix_col(vec, src_mat, row_index);
926         } else {
927                 vector_add_matrix_row(vec, src_mat, row_index);
928         }
929
930         if (tgt_is_src) {
931                 vector_add_matrix_col(vec, tgt_mat, col_index);
932         } else {
933                 vector_add_matrix_row(vec, tgt_mat, col_index);
934         }
935
936         node->solution = vector_get_min_index(vec);
937
938 #if KAPS_DUMP
939         if (pbqp->dump_file) {
940                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
941         }
942 #endif
943
944         obstack_free(&pbqp->obstack, vec);
945 }
946
947 void back_propagate(pbqp_t *pbqp)
948 {
949         unsigned node_index;
950         unsigned node_len   = node_bucket_get_length(reduced_bucket);
951
952 #if KAPS_DUMP
953         if (pbqp->dump_file) {
954                 dump_section(pbqp->dump_file, 2, "Back Propagation");
955         }
956 #endif
957
958         for (node_index = node_len; node_index > 0; --node_index) {
959                 pbqp_node_t *node = reduced_bucket[node_index - 1];
960
961                 switch (pbqp_node_get_degree(node)) {
962                         case 1:
963                                 back_propagate_RI(pbqp, node);
964                                 break;
965                         case 2:
966                                 back_propagate_RII(pbqp, node);
967                                 break;
968                         default:
969                                 panic("Only nodes with degree one or two should be in this bucket");
970                                 break;
971                 }
972         }
973 }
974
975 void apply_edge(pbqp_t *pbqp)
976 {
977         pbqp_edge_t *edge = edge_bucket_pop(&edge_bucket);
978
979         simplify_edge(pbqp, edge);
980 }
981
982 void apply_RI(pbqp_t *pbqp)
983 {
984         pbqp_node_t   *node   = node_bucket_pop(&node_buckets[1]);
985         pbqp_edge_t   *edge   = node->edges[0];
986         pbqp_matrix_t *mat    = edge->costs;
987         int            is_src = edge->src == node;
988         pbqp_node_t   *other_node;
989
990         (void) pbqp;
991         assert(pbqp_node_get_degree(node) == 1);
992
993         if (is_src) {
994                 other_node = edge->tgt;
995         } else {
996                 other_node = edge->src;
997         }
998
999 #if KAPS_DUMP
1000         if (pbqp->dump_file) {
1001                 char     txt[100];
1002                 sprintf(txt, "RI-Reduction of Node n%d", node->index);
1003                 dump_section(pbqp->dump_file, 2, txt);
1004                 pbqp_dump_graph(pbqp);
1005                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1006                 dump_node(pbqp->dump_file, node);
1007                 dump_node(pbqp->dump_file, other_node);
1008                 dump_edge(pbqp->dump_file, edge);
1009         }
1010 #endif
1011
1012         if (is_src) {
1013                 pbqp_matrix_add_to_all_cols(mat, node->costs);
1014                 normalize_towards_target(edge);
1015         } else {
1016                 pbqp_matrix_add_to_all_rows(mat, node->costs);
1017                 normalize_towards_source(edge);
1018         }
1019         disconnect_edge(other_node, edge);
1020
1021 #if KAPS_DUMP
1022         if (pbqp->dump_file) {
1023                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1024                 dump_node(pbqp->dump_file, other_node);
1025         }
1026 #endif
1027
1028         reorder_node_after_edge_deletion(other_node);
1029
1030 #if KAPS_STATISTIC
1031         pbqp->num_r1++;
1032 #endif
1033
1034         /* Add node to back propagation list. */
1035         node_bucket_insert(&reduced_bucket, node);
1036 }
1037
1038 void apply_RII(pbqp_t *pbqp)
1039 {
1040         pbqp_node_t   *node       = node_bucket_pop(&node_buckets[2]);
1041         pbqp_edge_t   *src_edge   = node->edges[0];
1042         pbqp_edge_t   *tgt_edge   = node->edges[1];
1043         int            src_is_src = src_edge->src == node;
1044         int            tgt_is_src = tgt_edge->src == node;
1045         pbqp_matrix_t *src_mat;
1046         pbqp_matrix_t *tgt_mat;
1047         pbqp_node_t   *src_node;
1048         pbqp_node_t   *tgt_node;
1049         pbqp_edge_t   *edge;
1050         pbqp_matrix_t *mat;
1051         vector_t      *vec;
1052         vector_t      *node_vec;
1053         vector_t      *src_vec;
1054         vector_t      *tgt_vec;
1055         unsigned       col_index;
1056         unsigned       col_len;
1057         unsigned       row_index;
1058         unsigned       row_len;
1059         unsigned       node_len;
1060
1061         assert(pbqp_node_get_degree(node) == 2);
1062
1063         if (src_is_src) {
1064                 src_node = src_edge->tgt;
1065         } else {
1066                 src_node = src_edge->src;
1067         }
1068
1069         if (tgt_is_src) {
1070                 tgt_node = tgt_edge->tgt;
1071         } else {
1072                 tgt_node = tgt_edge->src;
1073         }
1074
1075         /* Swap nodes if necessary. */
1076         if (tgt_node->index < src_node->index) {
1077                 pbqp_node_t *tmp_node;
1078                 pbqp_edge_t *tmp_edge;
1079
1080                 tmp_node = src_node;
1081                 src_node = tgt_node;
1082                 tgt_node = tmp_node;
1083
1084                 tmp_edge = src_edge;
1085                 src_edge = tgt_edge;
1086                 tgt_edge = tmp_edge;
1087
1088                 src_is_src = src_edge->src == node;
1089                 tgt_is_src = tgt_edge->src == node;
1090         }
1091
1092 #if KAPS_DUMP
1093         if (pbqp->dump_file) {
1094                 char     txt[100];
1095                 sprintf(txt, "RII-Reduction of Node n%d", node->index);
1096                 dump_section(pbqp->dump_file, 2, txt);
1097                 pbqp_dump_graph(pbqp);
1098                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1099                 dump_node(pbqp->dump_file, src_node);
1100                 dump_edge(pbqp->dump_file, src_edge);
1101                 dump_node(pbqp->dump_file, node);
1102                 dump_edge(pbqp->dump_file, tgt_edge);
1103                 dump_node(pbqp->dump_file, tgt_node);
1104         }
1105 #endif
1106
1107         src_mat = src_edge->costs;
1108         tgt_mat = tgt_edge->costs;
1109
1110         src_vec  = src_node->costs;
1111         tgt_vec  = tgt_node->costs;
1112         node_vec = node->costs;
1113
1114         row_len  = src_vec->len;
1115         col_len  = tgt_vec->len;
1116         node_len = node_vec->len;
1117
1118         mat = pbqp_matrix_alloc(pbqp, row_len, col_len);
1119
1120         for (row_index = 0; row_index < row_len; ++row_index) {
1121                 for (col_index = 0; col_index < col_len; ++col_index) {
1122                         vec = vector_copy(pbqp, node_vec);
1123
1124                         if (src_is_src) {
1125                                 vector_add_matrix_col(vec, src_mat, row_index);
1126                         } else {
1127                                 vector_add_matrix_row(vec, src_mat, row_index);
1128                         }
1129
1130                         if (tgt_is_src) {
1131                                 vector_add_matrix_col(vec, tgt_mat, col_index);
1132                         } else {
1133                                 vector_add_matrix_row(vec, tgt_mat, col_index);
1134                         }
1135
1136                         mat->entries[row_index * col_len + col_index] = vector_get_min(vec);
1137
1138                         obstack_free(&pbqp->obstack, vec);
1139                 }
1140         }
1141
1142         edge = get_edge(pbqp, src_node->index, tgt_node->index);
1143
1144         /* Disconnect node. */
1145         disconnect_edge(src_node, src_edge);
1146         disconnect_edge(tgt_node, tgt_edge);
1147
1148 #if KAPS_STATISTIC
1149         pbqp->num_r2++;
1150 #endif
1151
1152         /* Add node to back propagation list. */
1153         node_bucket_insert(&reduced_bucket, node);
1154
1155         if (edge == NULL) {
1156                 edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat);
1157         } else {
1158                 // matrix
1159                 pbqp_matrix_add(edge->costs, mat);
1160
1161                 /* Free local matrix. */
1162                 obstack_free(&pbqp->obstack, mat);
1163
1164                 reorder_node_after_edge_deletion(src_node);
1165                 reorder_node_after_edge_deletion(tgt_node);
1166         }
1167
1168 #if KAPS_DUMP
1169         if (pbqp->dump_file) {
1170                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1171                 dump_edge(pbqp->dump_file, edge);
1172         }
1173 #endif
1174
1175         /* Edge has changed so we simplify it. */
1176         simplify_edge(pbqp, edge);
1177 }
1178
1179 static void select_column(pbqp_edge_t *edge, unsigned col_index)
1180 {
1181         pbqp_matrix_t  *mat;
1182         pbqp_node_t    *src_node;
1183         pbqp_node_t    *tgt_node;
1184         vector_t       *src_vec;
1185         vector_t       *tgt_vec;
1186         unsigned        src_len;
1187         unsigned        tgt_len;
1188         unsigned        src_index;
1189         unsigned        new_infinity = 0;
1190
1191         src_node = edge->src;
1192         tgt_node = edge->tgt;
1193
1194         src_vec = src_node->costs;
1195         tgt_vec = tgt_node->costs;
1196
1197         src_len = src_vec->len;
1198         tgt_len = tgt_vec->len;
1199         assert(src_len > 0);
1200         assert(tgt_len > 0);
1201
1202         mat = edge->costs;
1203
1204         for (src_index = 0; src_index < src_len; ++src_index) {
1205                 num elem = mat->entries[src_index * tgt_len + col_index];
1206
1207                 if (elem != 0) {
1208                         if (elem == INF_COSTS && src_vec->entries[src_index].data != INF_COSTS)
1209                                 new_infinity = 1;
1210
1211                         src_vec->entries[src_index].data = pbqp_add(
1212                                         src_vec->entries[src_index].data, elem);
1213                 }
1214         }
1215
1216         if (new_infinity) {
1217                 unsigned edge_index;
1218                 unsigned edge_len = pbqp_node_get_degree(src_node);
1219
1220                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1221                         pbqp_edge_t *edge_candidate = src_node->edges[edge_index];
1222
1223                         if (edge_candidate != edge) {
1224                                 insert_into_edge_bucket(edge_candidate);
1225                         }
1226                 }
1227         }
1228
1229         delete_edge(edge);
1230 }
1231
1232 static void select_row(pbqp_edge_t *edge, unsigned row_index)
1233 {
1234         pbqp_matrix_t  *mat;
1235         pbqp_node_t    *src_node;
1236         pbqp_node_t    *tgt_node;
1237         vector_t       *tgt_vec;
1238         unsigned        tgt_len;
1239         unsigned        tgt_index;
1240         unsigned        new_infinity = 0;
1241
1242         src_node = edge->src;
1243         tgt_node = edge->tgt;
1244
1245         tgt_vec = tgt_node->costs;
1246
1247         tgt_len = tgt_vec->len;
1248         assert(tgt_len > 0);
1249
1250         mat = edge->costs;
1251
1252         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
1253                 num elem = mat->entries[row_index * tgt_len + tgt_index];
1254
1255                 if (elem != 0) {
1256                         if (elem == INF_COSTS && tgt_vec->entries[tgt_index].data != INF_COSTS)
1257                                 new_infinity = 1;
1258
1259                         tgt_vec->entries[tgt_index].data = pbqp_add(
1260                                         tgt_vec->entries[tgt_index].data, elem);
1261                 }
1262         }
1263
1264         if (new_infinity) {
1265                 unsigned edge_index;
1266                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
1267
1268                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1269                         pbqp_edge_t *edge_candidate = tgt_node->edges[edge_index];
1270
1271                         if (edge_candidate != edge) {
1272                                 insert_into_edge_bucket(edge_candidate);
1273                         }
1274                 }
1275         }
1276
1277         delete_edge(edge);
1278 }
1279
1280 void select_alternative(pbqp_node_t *node, unsigned selected_index)
1281 {
1282         unsigned  edge_index;
1283         unsigned  node_index;
1284         unsigned  node_len;
1285         vector_t *node_vec;
1286         unsigned  max_degree = pbqp_node_get_degree(node);
1287
1288         node->solution = selected_index;
1289         node_vec = node->costs;
1290         node_len = node_vec->len;
1291         assert(selected_index < node_len);
1292
1293         /* Set all other costs to infinity. */
1294         for (node_index = 0; node_index < node_len; ++node_index) {
1295                 if (node_index != selected_index) {
1296                         node_vec->entries[node_index].data = INF_COSTS;
1297                 }
1298         }
1299
1300         /* Select corresponding row/column for incident edges. */
1301         for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1302                 pbqp_edge_t *edge = node->edges[edge_index];
1303
1304                 if (edge->src == node)
1305                         select_row(edge, selected_index);
1306                 else
1307                         select_column(edge, selected_index);
1308         }
1309 }
1310
1311 pbqp_node_t *get_node_with_max_degree(void)
1312 {
1313         pbqp_node_t **bucket       = node_buckets[3];
1314         unsigned      bucket_len   = node_bucket_get_length(bucket);
1315         unsigned      bucket_index;
1316         unsigned      max_degree   = 0;
1317         pbqp_node_t  *result       = NULL;
1318
1319         for (bucket_index = 0; bucket_index < bucket_len; ++bucket_index) {
1320                 pbqp_node_t *candidate = bucket[bucket_index];
1321                 unsigned     degree    = pbqp_node_get_degree(candidate);
1322
1323                 if (degree > max_degree) {
1324                         result = candidate;
1325                         max_degree = degree;
1326                 }
1327         }
1328
1329         return result;
1330 }
1331
1332 unsigned get_local_minimal_alternative(pbqp_t *pbqp, pbqp_node_t *node)
1333 {
1334         pbqp_edge_t   *edge;
1335         vector_t      *node_vec;
1336         vector_t      *vec;
1337         pbqp_matrix_t *mat;
1338         unsigned       edge_index;
1339         unsigned       max_degree;
1340         unsigned       node_index;
1341         unsigned       node_len;
1342         unsigned       min_index    = 0;
1343         num            min          = INF_COSTS;
1344         int            is_src;
1345
1346         node_vec   = node->costs;
1347         node_len   = node_vec->len;
1348         max_degree = pbqp_node_get_degree(node);
1349
1350         for (node_index = 0; node_index < node_len; ++node_index) {
1351                 num value = node_vec->entries[node_index].data;
1352
1353                 for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1354                         edge   = node->edges[edge_index];
1355                         mat    = edge->costs;
1356                         is_src = edge->src == node;
1357
1358                         if (is_src) {
1359                                 vec = vector_copy(pbqp, edge->tgt->costs);
1360                                 vector_add_matrix_row(vec, mat, node_index);
1361                         } else {
1362                                 vec = vector_copy(pbqp, edge->src->costs);
1363                                 vector_add_matrix_col(vec, mat, node_index);
1364                         }
1365
1366                         value = pbqp_add(value, vector_get_min(vec));
1367
1368                         obstack_free(&pbqp->obstack, vec);
1369                 }
1370
1371                 if (value < min) {
1372                         min = value;
1373                         min_index = node_index;
1374                 }
1375         }
1376
1377         return min_index;
1378 }
1379
1380 int node_is_reduced(pbqp_node_t *node)
1381 {
1382         if (!reduced_bucket) return 0;
1383
1384         if (pbqp_node_get_degree(node) == 0) return 1;
1385
1386         return node_bucket_contains(reduced_bucket, node);
1387 }