tarvals are unique no need to use tarval_cmp for equality checks
[libfirm] / ir / kaps / optimal.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Optimal reductions and helper functions.
23  * @date    28.12.2009
24  * @author  Sebastian Buchwald
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "adt/array.h"
30 #include "assert.h"
31 #include "error.h"
32
33 #include "bucket.h"
34 #if KAPS_DUMP
35 #include "html_dumper.h"
36 #endif
37 #include "kaps.h"
38 #include "matrix.h"
39 #include "optimal.h"
40 #include "pbqp_edge.h"
41 #include "pbqp_edge_t.h"
42 #include "pbqp_node.h"
43 #include "pbqp_node_t.h"
44 #include "vector.h"
45
46 #include "plist.h"
47 #include "timing.h"
48
49 pbqp_edge_t **edge_bucket;
50 static pbqp_edge_t **rm_bucket;
51 pbqp_node_t **node_buckets[4];
52 pbqp_node_t **reduced_bucket = NULL;
53 pbqp_node_t  *merged_node = NULL;
54 static int  buckets_filled = 0;
55
56 static void insert_into_edge_bucket(pbqp_edge_t *edge)
57 {
58         if (edge_bucket_contains(edge_bucket, edge)) {
59                 /* Edge is already inserted. */
60                 return;
61         }
62
63         edge_bucket_insert(&edge_bucket, edge);
64 }
65
66 static void insert_into_rm_bucket(pbqp_edge_t *edge)
67 {
68         if (edge_bucket_contains(rm_bucket, edge)) {
69                 /* Edge is already inserted. */
70                 return;
71         }
72
73         edge_bucket_insert(&rm_bucket, edge);
74 }
75
76 static void init_buckets(void)
77 {
78         int i;
79
80         edge_bucket_init(&edge_bucket);
81         edge_bucket_init(&rm_bucket);
82         node_bucket_init(&reduced_bucket);
83
84         for (i = 0; i < 4; ++i) {
85                 node_bucket_init(&node_buckets[i]);
86         }
87 }
88
89 void free_buckets(void)
90 {
91         int i;
92
93         for (i = 0; i < 4; ++i) {
94                 node_bucket_free(&node_buckets[i]);
95         }
96
97         edge_bucket_free(&edge_bucket);
98         edge_bucket_free(&rm_bucket);
99         node_bucket_free(&reduced_bucket);
100
101         buckets_filled = 0;
102 }
103
104 void fill_node_buckets(pbqp_t *pbqp)
105 {
106         unsigned node_index;
107         unsigned node_len;
108
109         node_len = pbqp->num_nodes;
110
111         #if KAPS_TIMING
112                 ir_timer_t *t_fill_buckets = ir_timer_new();
113                 ir_timer_start(t_fill_buckets);
114         #endif
115
116         for (node_index = 0; node_index < node_len; ++node_index) {
117                 unsigned     degree;
118                 pbqp_node_t *node = get_node(pbqp, node_index);
119
120                 if (!node) continue;
121
122                 degree = pbqp_node_get_degree(node);
123
124                 /* We have only one bucket for nodes with arity >= 3. */
125                 if (degree > 3) {
126                         degree = 3;
127                 }
128
129                 node_bucket_insert(&node_buckets[degree], node);
130         }
131
132         buckets_filled = 1;
133
134         #if KAPS_TIMING
135                 ir_timer_stop(t_fill_buckets);
136                 printf("PBQP Fill Nodes into buckets: %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_fill_buckets) / 1000.0);
137         #endif
138 }
139
140 static void normalize_towards_source(pbqp_edge_t *edge)
141 {
142         pbqp_matrix_t  *mat;
143         pbqp_node_t    *src_node;
144         pbqp_node_t    *tgt_node;
145         vector_t       *src_vec;
146         vector_t       *tgt_vec;
147         unsigned        src_len;
148         unsigned        tgt_len;
149         unsigned        src_index;
150         unsigned        new_infinity = 0;
151
152         src_node = edge->src;
153         tgt_node = edge->tgt;
154
155         src_vec = src_node->costs;
156         tgt_vec = tgt_node->costs;
157
158         src_len = src_vec->len;
159         tgt_len = tgt_vec->len;
160         assert(src_len > 0);
161         assert(tgt_len > 0);
162
163         mat = edge->costs;
164
165         /* Normalize towards source node. */
166         for (src_index = 0; src_index < src_len; ++src_index) {
167                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
168
169                 if (min != 0) {
170                         if (src_vec->entries[src_index].data == INF_COSTS) {
171                                 pbqp_matrix_set_row_value(mat, src_index, 0);
172                                 continue;
173                         }
174
175                         pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
176                         src_vec->entries[src_index].data = pbqp_add(
177                                         src_vec->entries[src_index].data, min);
178
179                         if (min == INF_COSTS) {
180                                 new_infinity = 1;
181                         }
182                 }
183         }
184
185         if (new_infinity) {
186                 unsigned edge_index;
187                 unsigned edge_len = pbqp_node_get_degree(src_node);
188
189                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
190                         pbqp_edge_t *edge_candidate = src_node->edges[edge_index];
191
192                         if (edge_candidate != edge) {
193                                 insert_into_edge_bucket(edge_candidate);
194                         }
195                 }
196         }
197 }
198
199 static void normalize_towards_target(pbqp_edge_t *edge)
200 {
201         pbqp_matrix_t  *mat;
202         pbqp_node_t    *src_node;
203         pbqp_node_t    *tgt_node;
204         vector_t       *src_vec;
205         vector_t       *tgt_vec;
206         unsigned        src_len;
207         unsigned        tgt_len;
208         unsigned        tgt_index;
209         unsigned        new_infinity = 0;
210
211         src_node = edge->src;
212         tgt_node = edge->tgt;
213
214         src_vec = src_node->costs;
215         tgt_vec = tgt_node->costs;
216
217         src_len = src_vec->len;
218         tgt_len = tgt_vec->len;
219         assert(src_len > 0);
220         assert(tgt_len > 0);
221
222         mat = edge->costs;
223
224         /* Normalize towards target node. */
225         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
226                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
227
228                 if (min != 0) {
229                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
230                                 pbqp_matrix_set_col_value(mat, tgt_index, 0);
231                                 continue;
232                         }
233
234                         pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
235                         tgt_vec->entries[tgt_index].data = pbqp_add(
236                                         tgt_vec->entries[tgt_index].data, min);
237
238                         if (min == INF_COSTS) {
239                                 new_infinity = 1;
240                         }
241                 }
242         }
243
244         if (new_infinity) {
245                 unsigned edge_index;
246                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
247
248                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
249                         pbqp_edge_t *edge_candidate = tgt_node->edges[edge_index];
250
251                         if (edge_candidate != edge) {
252                                 insert_into_edge_bucket(edge_candidate);
253                         }
254                 }
255         }
256 }
257
258 /**
259  * Tries to apply RM for the source node of the given edge.
260  *
261  * Checks whether the source node of edge can be merged into the target node of
262  * edge, and performs the merge, if possible.
263  */
264 static void merge_source_into_target(pbqp_t *pbqp, pbqp_edge_t *edge)
265 {
266         pbqp_matrix_t  *mat;
267         pbqp_node_t    *src_node;
268         pbqp_node_t    *tgt_node;
269         vector_t       *src_vec;
270         vector_t       *tgt_vec;
271         unsigned       *mapping;
272         unsigned        src_len;
273         unsigned        tgt_len;
274         unsigned        tgt_index;
275         unsigned        edge_index;
276         unsigned        edge_len;
277
278         src_node = edge->src;
279         tgt_node = edge->tgt;
280
281         src_vec = src_node->costs;
282         tgt_vec = tgt_node->costs;
283
284         src_len = src_vec->len;
285         tgt_len = tgt_vec->len;
286
287         /* Matrizes are normalized. */
288         assert(src_len > 1);
289         assert(tgt_len > 1);
290
291         mat = edge->costs;
292
293         mapping = NEW_ARR_F(unsigned, tgt_len);
294
295         /* Check that each column has at most one zero entry. */
296         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
297                 unsigned onlyOneZero = 0;
298                 unsigned src_index;
299
300                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
301                         continue;
302
303                 for (src_index = 0; src_index < src_len; ++src_index) {
304                         if (src_vec->entries[src_index].data == INF_COSTS)
305                                 continue;
306
307                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
308                                 continue;
309
310                         /* Matrix entry is finite. */
311                         if (onlyOneZero) {
312                                 DEL_ARR_F(mapping);
313                                 return;
314                         }
315
316                         onlyOneZero = 1;
317                         mapping[tgt_index] = src_index;
318                 }
319         }
320
321         /* We know that we can merge the source node into the target node. */
322         edge_len = pbqp_node_get_degree(src_node);
323
324 #if KAPS_STATISTIC
325         pbqp->num_rm++;
326 #endif
327
328 #if KAPS_DUMP
329         if (pbqp->dump_file) {
330                 char txt[100];
331                 sprintf(txt, "Merging n%d into n%d", src_node->index, tgt_node->index);
332                 dump_section(pbqp->dump_file, 3, txt);
333         }
334 #endif
335
336         /* Reconnect the source's edges with the target node. */
337         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
338                 pbqp_edge_t   *old_edge = src_node->edges[edge_index];
339                 pbqp_edge_t   *new_edge;
340                 pbqp_matrix_t *old_matrix;
341                 pbqp_matrix_t *new_matrix;
342                 pbqp_node_t   *other_node;
343                 vector_t      *other_vec;
344                 unsigned       other_len;
345                 unsigned       other_index;
346
347                 assert(old_edge);
348                 if (old_edge == edge)
349                         continue;
350
351                 old_matrix = old_edge->costs;
352
353                 if (old_edge->tgt == src_node) {
354                         other_node = old_edge->src;
355                         other_len  = old_matrix->rows;
356                 }
357                 else {
358                         other_node = old_edge->tgt;
359                         other_len = old_matrix->cols;
360                 }
361                 other_vec = other_node->costs;
362
363                 new_matrix = pbqp_matrix_alloc(pbqp, tgt_len, other_len);
364
365                 /* Source node selects the column of the old_matrix. */
366                 if (old_edge->tgt == src_node) {
367                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
368                                 unsigned src_index = mapping[tgt_index];
369
370                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
371                                         continue;
372
373                                 for (other_index = 0; other_index < other_len; ++other_index) {
374                                         if (other_vec->entries[other_index].data == INF_COSTS)
375                                                 continue;
376
377                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[other_index*src_len+src_index];
378                                 }
379                         }
380                 }
381                 /* Source node selects the row of the old_matrix. */
382                 else {
383                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
384                                 unsigned src_index = mapping[tgt_index];
385
386                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
387                                         continue;
388
389                                 for (other_index = 0; other_index < other_len; ++other_index) {
390                                         if (other_vec->entries[other_index].data == INF_COSTS)
391                                                 continue;
392
393                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[src_index*other_len+other_index];
394                                 }
395                         }
396                 }
397
398                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
399
400                 add_edge_costs(pbqp, tgt_node->index, other_node->index, new_matrix);
401
402                 if (new_edge == NULL) {
403                         reorder_node_after_edge_insertion(tgt_node);
404                         reorder_node_after_edge_insertion(other_node);
405                 }
406
407                 delete_edge(old_edge);
408
409                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
410                 simplify_edge(pbqp, new_edge);
411
412                 insert_into_rm_bucket(new_edge);
413         }
414
415 #if KAPS_STATISTIC
416         pbqp->num_r1--;
417 #endif
418 }
419
420 /**
421  * Tries to apply RM for the target node of the given edge.
422  *
423  * Checks whether the target node of edge can be merged into the source node of
424  * edge, and performs the merge, if possible.
425  */
426 static void merge_target_into_source(pbqp_t *pbqp, pbqp_edge_t *edge)
427 {
428         pbqp_matrix_t  *mat;
429         pbqp_node_t    *src_node;
430         pbqp_node_t    *tgt_node;
431         vector_t       *src_vec;
432         vector_t       *tgt_vec;
433         unsigned       *mapping;
434         unsigned        src_len;
435         unsigned        tgt_len;
436         unsigned        src_index;
437         unsigned        edge_index;
438         unsigned        edge_len;
439
440         src_node = edge->src;
441         tgt_node = edge->tgt;
442
443         src_vec = src_node->costs;
444         tgt_vec = tgt_node->costs;
445
446         src_len = src_vec->len;
447         tgt_len = tgt_vec->len;
448
449         /* Matrizes are normalized. */
450         assert(src_len > 1);
451         assert(tgt_len > 1);
452
453         mat = edge->costs;
454
455         mapping = NEW_ARR_F(unsigned, src_len);
456
457         /* Check that each row has at most one zero entry. */
458         for (src_index = 0; src_index < src_len; ++src_index) {
459                 unsigned onlyOneZero = 0;
460                 unsigned tgt_index;
461
462                 if (src_vec->entries[src_index].data == INF_COSTS)
463                         continue;
464
465                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
466                         if (tgt_vec->entries[tgt_index].data == INF_COSTS)
467                                 continue;
468
469                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
470                                 continue;
471
472                         /* Matrix entry is finite. */
473                         if (onlyOneZero) {
474                                 DEL_ARR_F(mapping);
475                                 return;
476                         }
477
478                         onlyOneZero = 1;
479                         mapping[src_index] = tgt_index;
480                 }
481         }
482
483         /* We know that we can merge the target node into the source node. */
484         edge_len = pbqp_node_get_degree(tgt_node);
485
486 #if KAPS_STATISTIC
487         pbqp->num_rm++;
488 #endif
489
490 #if KAPS_DUMP
491         if (pbqp->dump_file) {
492                 char txt[100];
493                 sprintf(txt, "Merging n%d into n%d", tgt_node->index, src_node->index);
494                 dump_section(pbqp->dump_file, 3, txt);
495         }
496 #endif
497
498         /* Reconnect the target's edges with the source node. */
499         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
500                 pbqp_edge_t   *old_edge = tgt_node->edges[edge_index];
501                 pbqp_edge_t   *new_edge;
502                 pbqp_matrix_t *old_matrix;
503                 pbqp_matrix_t *new_matrix;
504                 pbqp_node_t   *other_node;
505                 vector_t      *other_vec;
506                 unsigned       other_len;
507                 unsigned       other_index;
508
509                 assert(old_edge);
510
511                 if (old_edge == edge)
512                         continue;
513
514                 old_matrix = old_edge->costs;
515
516                 if (old_edge->tgt == tgt_node) {
517                         other_node = old_edge->src;
518                         other_len  = old_matrix->rows;
519                 }
520                 else {
521                         other_node = old_edge->tgt;
522                         other_len = old_matrix->cols;
523                 }
524                 other_vec = other_node->costs;
525
526                 new_matrix = pbqp_matrix_alloc(pbqp, src_len, other_len);
527
528                 /* Target node selects the column of the old_matrix. */
529                 if (old_edge->tgt == tgt_node) {
530                         for (src_index = 0; src_index < src_len; ++src_index) {
531                                 unsigned tgt_index = mapping[src_index];
532
533                                 if (src_vec->entries[src_index].data == INF_COSTS)
534                                         continue;
535
536                                 for (other_index = 0; other_index < other_len; ++other_index) {
537                                         if (other_vec->entries[other_index].data == INF_COSTS)
538                                                 continue;
539
540                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[other_index*tgt_len+tgt_index];
541                                 }
542                         }
543                 }
544                 /* Source node selects the row of the old_matrix. */
545                 else {
546                         for (src_index = 0; src_index < src_len; ++src_index) {
547                                 unsigned tgt_index = mapping[src_index];
548
549                                 if (src_vec->entries[src_index].data == INF_COSTS)
550                                         continue;
551
552                                 for (other_index = 0; other_index < other_len; ++other_index) {
553                                         if (other_vec->entries[other_index].data == INF_COSTS)
554                                                 continue;
555
556                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[tgt_index*other_len+other_index];
557                                 }
558                         }
559                 }
560
561                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
562
563                 add_edge_costs(pbqp, src_node->index, other_node->index, new_matrix);
564
565                 if (new_edge == NULL) {
566                         reorder_node_after_edge_insertion(src_node);
567                         reorder_node_after_edge_insertion(other_node);
568                 }
569
570                 delete_edge(old_edge);
571
572                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
573                 simplify_edge(pbqp, new_edge);
574
575                 insert_into_rm_bucket(new_edge);
576         }
577
578 #if KAPS_STATISTIC
579         pbqp->num_r1--;
580 #endif
581 }
582
583 /**
584  * Merge neighbors into the given node.
585  */
586 void apply_RM(pbqp_t *pbqp, pbqp_node_t *node)
587 {
588         pbqp_edge_t **edges;
589         unsigned      edge_index;
590         unsigned      edge_len;
591
592         edges    = node->edges;
593         edge_len = pbqp_node_get_degree(node);
594
595         /* Check all incident edges. */
596         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
597                 pbqp_edge_t *edge = edges[edge_index];
598
599                 insert_into_rm_bucket(edge);
600         }
601
602         /* ALAP: Merge neighbors into given node. */
603         while(edge_bucket_get_length(rm_bucket) > 0) {
604                 pbqp_edge_t *edge = edge_bucket_pop(&rm_bucket);
605
606                 /* If the edge is not deleted: Try a merge. */
607                 if (edge->src == node)
608                         merge_target_into_source(pbqp, edge);
609                 else if (edge->tgt == node)
610                         merge_source_into_target(pbqp, edge);
611         }
612
613         merged_node = node;
614 }
615
616 void reorder_node_after_edge_deletion(pbqp_node_t *node)
617 {
618         unsigned    degree     = pbqp_node_get_degree(node);
619         /* Assume node lost one incident edge. */
620         unsigned    old_degree = degree + 1;
621
622         if (!buckets_filled) return;
623
624         /* Same bucket as before */
625         if (degree > 2) return;
626
627         /* Delete node from old bucket... */
628         node_bucket_remove(&node_buckets[old_degree], node);
629
630         /* ..and add to new one. */
631         node_bucket_insert(&node_buckets[degree], node);
632 }
633
634 void reorder_node_after_edge_insertion(pbqp_node_t *node)
635 {
636         unsigned    degree     = pbqp_node_get_degree(node);
637         /* Assume node lost one incident edge. */
638         unsigned    old_degree = degree - 1;
639
640         if (!buckets_filled) return;
641
642         /* Same bucket as before */
643         if (old_degree > 2) return;
644
645         /* Delete node from old bucket... */
646         node_bucket_remove(&node_buckets[old_degree], node);
647
648         /* ..and add to new one. */
649         node_bucket_insert(&node_buckets[degree], node);
650 }
651
652 void simplify_edge(pbqp_t *pbqp, pbqp_edge_t *edge)
653 {
654         pbqp_matrix_t *mat;
655         pbqp_node_t   *src_node;
656         pbqp_node_t   *tgt_node;
657         vector_t      *src_vec;
658         vector_t      *tgt_vec;
659         int            src_len;
660         int            tgt_len;
661
662         (void) pbqp;
663
664         src_node = edge->src;
665         tgt_node = edge->tgt;
666         assert(src_node);
667         assert(tgt_node);
668
669         /* If edge are already deleted, we have nothing to do. */
670         if (is_deleted(edge))
671                 return;
672
673 #if KAPS_DUMP
674         if (pbqp->dump_file) {
675                 char txt[100];
676                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
677                 dump_section(pbqp->dump_file, 3, txt);
678         }
679 #endif
680
681         src_vec = src_node->costs;
682         tgt_vec = tgt_node->costs;
683
684         src_len = src_vec->len;
685         tgt_len = tgt_vec->len;
686         assert(src_len > 0);
687         assert(tgt_len > 0);
688
689         mat = edge->costs;
690
691 #if KAPS_DUMP
692         if (pbqp->dump_file) {
693                 fputs("Input:<br>\n", pbqp->dump_file);
694                 dump_simplifyedge(pbqp, edge);
695         }
696 #endif
697
698         normalize_towards_source(edge);
699         normalize_towards_target(edge);
700
701 #if KAPS_DUMP
702         if (pbqp->dump_file) {
703                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
704                 dump_simplifyedge(pbqp, edge);
705         }
706 #endif
707
708         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
709 #if KAPS_DUMP
710                 if (pbqp->dump_file) {
711                         fputs("edge has been eliminated<br>\n", pbqp->dump_file);
712                 }
713 #endif
714
715 #if KAPS_STATISTIC
716                 pbqp->num_edges++;
717 #endif
718
719                 delete_edge(edge);
720         }
721 }
722
723 void initial_simplify_edges(pbqp_t *pbqp)
724 {
725         unsigned node_index;
726         unsigned node_len;
727
728         #if KAPS_TIMING
729                 ir_timer_t *t_int_simpl = ir_timer_new();
730                 ir_timer_start(t_int_simpl);
731         #endif
732
733 #if KAPS_DUMP
734         if (pbqp->dump_file) {
735                 pbqp_dump_input(pbqp);
736                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
737         }
738 #endif
739
740         node_len = pbqp->num_nodes;
741
742         init_buckets();
743
744         /* First simplify all edges. */
745         for (node_index = 0; node_index < node_len; ++node_index) {
746                 unsigned      edge_index;
747                 pbqp_node_t  *node = get_node(pbqp, node_index);
748                 pbqp_edge_t **edges;
749                 unsigned      edge_len;
750
751                 if (!node) continue;
752
753                 edges = node->edges;
754                 edge_len = pbqp_node_get_degree(node);
755
756                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
757                         pbqp_edge_t *edge = edges[edge_index];
758
759                         /* Simplify only once per edge. */
760                         if (node != edge->src) continue;
761
762                         simplify_edge(pbqp, edge);
763                 }
764         }
765
766         #if KAPS_TIMING
767                 ir_timer_stop(t_int_simpl);
768                 printf("PBQP Initial simplify edges:  %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_int_simpl) / 1000.0);
769         #endif
770 }
771
772 num determine_solution(pbqp_t *pbqp)
773 {
774         unsigned node_index;
775         unsigned node_len;
776         num      solution   = 0;
777
778         #if KAPS_TIMING
779                 ir_timer_t *t_det_solution = ir_timer_new();
780                 ir_timer_reset_and_start(t_det_solution);
781         #endif
782
783 #if KAPS_DUMP
784         FILE     *file;
785 #endif
786
787         (void) pbqp;
788
789 #if KAPS_DUMP
790         file = pbqp->dump_file;
791
792         if (file) {
793                 dump_section(file, 1, "4. Determine Solution/Minimum");
794                 dump_section(file, 2, "4.1. Trivial Solution");
795         }
796 #endif
797
798         /* Solve trivial nodes and calculate solution. */
799         node_len = node_bucket_get_length(node_buckets[0]);
800
801 #if KAPS_STATISTIC
802         pbqp->num_r0 = node_len;
803 #endif
804
805         for (node_index = 0; node_index < node_len; ++node_index) {
806                 pbqp_node_t *node = node_buckets[0][node_index];
807
808                 node->solution = vector_get_min_index(node->costs);
809                 solution       = pbqp_add(solution,
810                                 node->costs->entries[node->solution].data);
811
812 #if KAPS_DUMP
813                 if (file) {
814                         fprintf(file, "node n%d is set to %d<br>\n", node->index, node->solution);
815                         dump_node(file, node);
816                 }
817 #endif
818         }
819
820 #if KAPS_DUMP
821         if (file) {
822                 dump_section(file, 2, "Minimum");
823 #if KAPS_USE_UNSIGNED
824                 fprintf(file, "Minimum is equal to %u.", solution);
825 #else
826                 fprintf(file, "Minimum is equal to %lld.", solution);
827 #endif
828         }
829 #endif
830
831         #if KAPS_TIMING
832                 ir_timer_stop(t_det_solution);
833                 printf("PBQP Determine Solution:      %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_det_solution) / 1000.0);
834         #endif
835
836         return solution;
837 }
838
839 static void back_propagate_RI(pbqp_t *pbqp, pbqp_node_t *node)
840 {
841         pbqp_edge_t   *edge;
842         pbqp_node_t   *other;
843         pbqp_matrix_t *mat;
844         vector_t      *vec;
845         int            is_src;
846         (void) pbqp;
847
848         edge = node->edges[0];
849         mat = edge->costs;
850         is_src = edge->src == node;
851         vec = node->costs;
852
853         if (is_src) {
854                 other = edge->tgt;
855                 node->solution = pbqp_matrix_get_col_min_index(mat, other->solution, vec);
856         } else {
857                 other = edge->src;
858                 node->solution = pbqp_matrix_get_row_min_index(mat, other->solution, vec);
859         }
860
861 #if KAPS_DUMP
862         if (pbqp->dump_file) {
863                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
864         }
865 #endif
866 }
867
868 static void back_propagate_RII(pbqp_t *pbqp, pbqp_node_t *node)
869 {
870         pbqp_edge_t   *src_edge   = node->edges[0];
871         pbqp_edge_t   *tgt_edge   = node->edges[1];
872         int            src_is_src = src_edge->src == node;
873         int            tgt_is_src = tgt_edge->src == node;
874         pbqp_matrix_t *src_mat;
875         pbqp_matrix_t *tgt_mat;
876         pbqp_node_t   *src_node;
877         pbqp_node_t   *tgt_node;
878         vector_t      *vec;
879         vector_t      *node_vec;
880         unsigned       col_index;
881         unsigned       row_index;
882
883         if (src_is_src) {
884                 src_node = src_edge->tgt;
885         } else {
886                 src_node = src_edge->src;
887         }
888
889         if (tgt_is_src) {
890                 tgt_node = tgt_edge->tgt;
891         } else {
892                 tgt_node = tgt_edge->src;
893         }
894
895         /* Swap nodes if necessary. */
896         if (tgt_node->index < src_node->index) {
897                 pbqp_node_t *tmp_node;
898                 pbqp_edge_t *tmp_edge;
899
900                 tmp_node = src_node;
901                 src_node = tgt_node;
902                 tgt_node = tmp_node;
903
904                 tmp_edge = src_edge;
905                 src_edge = tgt_edge;
906                 tgt_edge = tmp_edge;
907
908                 src_is_src = src_edge->src == node;
909                 tgt_is_src = tgt_edge->src == node;
910         }
911
912         src_mat = src_edge->costs;
913         tgt_mat = tgt_edge->costs;
914
915         node_vec = node->costs;
916
917         row_index = src_node->solution;
918         col_index = tgt_node->solution;
919
920         vec = vector_copy(pbqp, node_vec);
921
922         if (src_is_src) {
923                 vector_add_matrix_col(vec, src_mat, row_index);
924         } else {
925                 vector_add_matrix_row(vec, src_mat, row_index);
926         }
927
928         if (tgt_is_src) {
929                 vector_add_matrix_col(vec, tgt_mat, col_index);
930         } else {
931                 vector_add_matrix_row(vec, tgt_mat, col_index);
932         }
933
934         node->solution = vector_get_min_index(vec);
935
936 #if KAPS_DUMP
937         if (pbqp->dump_file) {
938                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
939         }
940 #endif
941
942         obstack_free(&pbqp->obstack, vec);
943 }
944
945 void back_propagate(pbqp_t *pbqp)
946 {
947         unsigned node_index;
948         unsigned node_len   = node_bucket_get_length(reduced_bucket);
949
950 #if KAPS_DUMP
951         if (pbqp->dump_file) {
952                 dump_section(pbqp->dump_file, 2, "Back Propagation");
953         }
954 #endif
955
956         for (node_index = node_len; node_index > 0; --node_index) {
957                 pbqp_node_t *node = reduced_bucket[node_index - 1];
958
959                 switch (pbqp_node_get_degree(node)) {
960                         case 1:
961                                 back_propagate_RI(pbqp, node);
962                                 break;
963                         case 2:
964                                 back_propagate_RII(pbqp, node);
965                                 break;
966                         default:
967                                 panic("Only nodes with degree one or two should be in this bucket");
968                 }
969         }
970 }
971
972 void apply_edge(pbqp_t *pbqp)
973 {
974         pbqp_edge_t *edge = edge_bucket_pop(&edge_bucket);
975
976         simplify_edge(pbqp, edge);
977 }
978
979 void apply_RI(pbqp_t *pbqp)
980 {
981         pbqp_node_t   *node   = node_bucket_pop(&node_buckets[1]);
982         pbqp_edge_t   *edge   = node->edges[0];
983         pbqp_matrix_t *mat    = edge->costs;
984         int            is_src = edge->src == node;
985         pbqp_node_t   *other_node;
986
987         (void) pbqp;
988         assert(pbqp_node_get_degree(node) == 1);
989
990         if (is_src) {
991                 other_node = edge->tgt;
992         } else {
993                 other_node = edge->src;
994         }
995
996 #if KAPS_DUMP
997         if (pbqp->dump_file) {
998                 char     txt[100];
999                 sprintf(txt, "RI-Reduction of Node n%d", node->index);
1000                 dump_section(pbqp->dump_file, 2, txt);
1001                 pbqp_dump_graph(pbqp);
1002                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1003                 dump_node(pbqp->dump_file, node);
1004                 dump_node(pbqp->dump_file, other_node);
1005                 dump_edge(pbqp->dump_file, edge);
1006         }
1007 #endif
1008
1009         if (is_src) {
1010                 pbqp_matrix_add_to_all_cols(mat, node->costs);
1011                 normalize_towards_target(edge);
1012         } else {
1013                 pbqp_matrix_add_to_all_rows(mat, node->costs);
1014                 normalize_towards_source(edge);
1015         }
1016         disconnect_edge(other_node, edge);
1017
1018 #if KAPS_DUMP
1019         if (pbqp->dump_file) {
1020                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1021                 dump_node(pbqp->dump_file, other_node);
1022         }
1023 #endif
1024
1025         reorder_node_after_edge_deletion(other_node);
1026
1027 #if KAPS_STATISTIC
1028         pbqp->num_r1++;
1029 #endif
1030
1031         /* Add node to back propagation list. */
1032         node_bucket_insert(&reduced_bucket, node);
1033 }
1034
1035 void apply_RII(pbqp_t *pbqp)
1036 {
1037         pbqp_node_t   *node       = node_bucket_pop(&node_buckets[2]);
1038         pbqp_edge_t   *src_edge   = node->edges[0];
1039         pbqp_edge_t   *tgt_edge   = node->edges[1];
1040         int            src_is_src = src_edge->src == node;
1041         int            tgt_is_src = tgt_edge->src == node;
1042         pbqp_matrix_t *src_mat;
1043         pbqp_matrix_t *tgt_mat;
1044         pbqp_node_t   *src_node;
1045         pbqp_node_t   *tgt_node;
1046         pbqp_edge_t   *edge;
1047         pbqp_matrix_t *mat;
1048         vector_t      *vec;
1049         vector_t      *node_vec;
1050         vector_t      *src_vec;
1051         vector_t      *tgt_vec;
1052         unsigned       col_index;
1053         unsigned       col_len;
1054         unsigned       row_index;
1055         unsigned       row_len;
1056
1057         assert(pbqp_node_get_degree(node) == 2);
1058
1059         if (src_is_src) {
1060                 src_node = src_edge->tgt;
1061         } else {
1062                 src_node = src_edge->src;
1063         }
1064
1065         if (tgt_is_src) {
1066                 tgt_node = tgt_edge->tgt;
1067         } else {
1068                 tgt_node = tgt_edge->src;
1069         }
1070
1071         /* Swap nodes if necessary. */
1072         if (tgt_node->index < src_node->index) {
1073                 pbqp_node_t *tmp_node;
1074                 pbqp_edge_t *tmp_edge;
1075
1076                 tmp_node = src_node;
1077                 src_node = tgt_node;
1078                 tgt_node = tmp_node;
1079
1080                 tmp_edge = src_edge;
1081                 src_edge = tgt_edge;
1082                 tgt_edge = tmp_edge;
1083
1084                 src_is_src = src_edge->src == node;
1085                 tgt_is_src = tgt_edge->src == node;
1086         }
1087
1088 #if KAPS_DUMP
1089         if (pbqp->dump_file) {
1090                 char     txt[100];
1091                 sprintf(txt, "RII-Reduction of Node n%d", node->index);
1092                 dump_section(pbqp->dump_file, 2, txt);
1093                 pbqp_dump_graph(pbqp);
1094                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1095                 dump_node(pbqp->dump_file, src_node);
1096                 dump_edge(pbqp->dump_file, src_edge);
1097                 dump_node(pbqp->dump_file, node);
1098                 dump_edge(pbqp->dump_file, tgt_edge);
1099                 dump_node(pbqp->dump_file, tgt_node);
1100         }
1101 #endif
1102
1103         src_mat = src_edge->costs;
1104         tgt_mat = tgt_edge->costs;
1105
1106         src_vec  = src_node->costs;
1107         tgt_vec  = tgt_node->costs;
1108         node_vec = node->costs;
1109
1110         row_len  = src_vec->len;
1111         col_len  = tgt_vec->len;
1112
1113         mat = pbqp_matrix_alloc(pbqp, row_len, col_len);
1114
1115         for (row_index = 0; row_index < row_len; ++row_index) {
1116                 for (col_index = 0; col_index < col_len; ++col_index) {
1117                         vec = vector_copy(pbqp, node_vec);
1118
1119                         if (src_is_src) {
1120                                 vector_add_matrix_col(vec, src_mat, row_index);
1121                         } else {
1122                                 vector_add_matrix_row(vec, src_mat, row_index);
1123                         }
1124
1125                         if (tgt_is_src) {
1126                                 vector_add_matrix_col(vec, tgt_mat, col_index);
1127                         } else {
1128                                 vector_add_matrix_row(vec, tgt_mat, col_index);
1129                         }
1130
1131                         mat->entries[row_index * col_len + col_index] = vector_get_min(vec);
1132
1133                         obstack_free(&pbqp->obstack, vec);
1134                 }
1135         }
1136
1137         edge = get_edge(pbqp, src_node->index, tgt_node->index);
1138
1139         /* Disconnect node. */
1140         disconnect_edge(src_node, src_edge);
1141         disconnect_edge(tgt_node, tgt_edge);
1142
1143 #if KAPS_STATISTIC
1144         pbqp->num_r2++;
1145 #endif
1146
1147         /* Add node to back propagation list. */
1148         node_bucket_insert(&reduced_bucket, node);
1149
1150         if (edge == NULL) {
1151                 edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat);
1152         } else {
1153                 // matrix
1154                 pbqp_matrix_add(edge->costs, mat);
1155
1156                 /* Free local matrix. */
1157                 obstack_free(&pbqp->obstack, mat);
1158
1159                 reorder_node_after_edge_deletion(src_node);
1160                 reorder_node_after_edge_deletion(tgt_node);
1161         }
1162
1163 #if KAPS_DUMP
1164         if (pbqp->dump_file) {
1165                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1166                 dump_edge(pbqp->dump_file, edge);
1167         }
1168 #endif
1169
1170         /* Edge has changed so we simplify it. */
1171         simplify_edge(pbqp, edge);
1172 }
1173
1174 static void select_column(pbqp_edge_t *edge, unsigned col_index)
1175 {
1176         pbqp_matrix_t  *mat;
1177         pbqp_node_t    *src_node;
1178         pbqp_node_t    *tgt_node;
1179         vector_t       *src_vec;
1180         vector_t       *tgt_vec;
1181         unsigned        src_len;
1182         unsigned        tgt_len;
1183         unsigned        src_index;
1184         unsigned        new_infinity = 0;
1185
1186         src_node = edge->src;
1187         tgt_node = edge->tgt;
1188
1189         src_vec = src_node->costs;
1190         tgt_vec = tgt_node->costs;
1191
1192         src_len = src_vec->len;
1193         tgt_len = tgt_vec->len;
1194         assert(src_len > 0);
1195         assert(tgt_len > 0);
1196
1197         mat = edge->costs;
1198
1199         for (src_index = 0; src_index < src_len; ++src_index) {
1200                 num elem = mat->entries[src_index * tgt_len + col_index];
1201
1202                 if (elem != 0) {
1203                         if (elem == INF_COSTS && src_vec->entries[src_index].data != INF_COSTS)
1204                                 new_infinity = 1;
1205
1206                         src_vec->entries[src_index].data = pbqp_add(
1207                                         src_vec->entries[src_index].data, elem);
1208                 }
1209         }
1210
1211         if (new_infinity) {
1212                 unsigned edge_index;
1213                 unsigned edge_len = pbqp_node_get_degree(src_node);
1214
1215                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1216                         pbqp_edge_t *edge_candidate = src_node->edges[edge_index];
1217
1218                         if (edge_candidate != edge) {
1219                                 insert_into_edge_bucket(edge_candidate);
1220                         }
1221                 }
1222         }
1223
1224         delete_edge(edge);
1225 }
1226
1227 static void select_row(pbqp_edge_t *edge, unsigned row_index)
1228 {
1229         pbqp_matrix_t  *mat;
1230         pbqp_node_t    *tgt_node;
1231         vector_t       *tgt_vec;
1232         unsigned        tgt_len;
1233         unsigned        tgt_index;
1234         unsigned        new_infinity = 0;
1235
1236         tgt_node = edge->tgt;
1237
1238         tgt_vec = tgt_node->costs;
1239
1240         tgt_len = tgt_vec->len;
1241         assert(tgt_len > 0);
1242
1243         mat = edge->costs;
1244
1245         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
1246                 num elem = mat->entries[row_index * tgt_len + tgt_index];
1247
1248                 if (elem != 0) {
1249                         if (elem == INF_COSTS && tgt_vec->entries[tgt_index].data != INF_COSTS)
1250                                 new_infinity = 1;
1251
1252                         tgt_vec->entries[tgt_index].data = pbqp_add(
1253                                         tgt_vec->entries[tgt_index].data, elem);
1254                 }
1255         }
1256
1257         if (new_infinity) {
1258                 unsigned edge_index;
1259                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
1260
1261                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1262                         pbqp_edge_t *edge_candidate = tgt_node->edges[edge_index];
1263
1264                         if (edge_candidate != edge) {
1265                                 insert_into_edge_bucket(edge_candidate);
1266                         }
1267                 }
1268         }
1269
1270         delete_edge(edge);
1271 }
1272
1273 void select_alternative(pbqp_node_t *node, unsigned selected_index)
1274 {
1275         unsigned  edge_index;
1276         unsigned  node_index;
1277         unsigned  node_len;
1278         vector_t *node_vec;
1279         unsigned  max_degree = pbqp_node_get_degree(node);
1280
1281         node->solution = selected_index;
1282         node_vec = node->costs;
1283         node_len = node_vec->len;
1284         assert(selected_index < node_len);
1285
1286         /* Set all other costs to infinity. */
1287         for (node_index = 0; node_index < node_len; ++node_index) {
1288                 if (node_index != selected_index) {
1289                         node_vec->entries[node_index].data = INF_COSTS;
1290                 }
1291         }
1292
1293         /* Select corresponding row/column for incident edges. */
1294         for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1295                 pbqp_edge_t *edge = node->edges[edge_index];
1296
1297                 if (edge->src == node)
1298                         select_row(edge, selected_index);
1299                 else
1300                         select_column(edge, selected_index);
1301         }
1302 }
1303
1304 pbqp_node_t *get_node_with_max_degree(void)
1305 {
1306         pbqp_node_t **bucket       = node_buckets[3];
1307         unsigned      bucket_len   = node_bucket_get_length(bucket);
1308         unsigned      bucket_index;
1309         unsigned      max_degree   = 0;
1310         pbqp_node_t  *result       = NULL;
1311
1312         for (bucket_index = 0; bucket_index < bucket_len; ++bucket_index) {
1313                 pbqp_node_t *candidate = bucket[bucket_index];
1314                 unsigned     degree    = pbqp_node_get_degree(candidate);
1315
1316                 if (degree > max_degree) {
1317                         result = candidate;
1318                         max_degree = degree;
1319                 }
1320         }
1321
1322         return result;
1323 }
1324
1325 unsigned get_local_minimal_alternative(pbqp_t *pbqp, pbqp_node_t *node)
1326 {
1327         pbqp_edge_t   *edge;
1328         vector_t      *node_vec;
1329         vector_t      *vec;
1330         pbqp_matrix_t *mat;
1331         unsigned       edge_index;
1332         unsigned       max_degree;
1333         unsigned       node_index;
1334         unsigned       node_len;
1335         unsigned       min_index    = 0;
1336         num            min          = INF_COSTS;
1337         int            is_src;
1338
1339         node_vec   = node->costs;
1340         node_len   = node_vec->len;
1341         max_degree = pbqp_node_get_degree(node);
1342
1343         for (node_index = 0; node_index < node_len; ++node_index) {
1344                 num value = node_vec->entries[node_index].data;
1345
1346                 for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1347                         edge   = node->edges[edge_index];
1348                         mat    = edge->costs;
1349                         is_src = edge->src == node;
1350
1351                         if (is_src) {
1352                                 vec = vector_copy(pbqp, edge->tgt->costs);
1353                                 vector_add_matrix_row(vec, mat, node_index);
1354                         } else {
1355                                 vec = vector_copy(pbqp, edge->src->costs);
1356                                 vector_add_matrix_col(vec, mat, node_index);
1357                         }
1358
1359                         value = pbqp_add(value, vector_get_min(vec));
1360
1361                         obstack_free(&pbqp->obstack, vec);
1362                 }
1363
1364                 if (value < min) {
1365                         min = value;
1366                         min_index = node_index;
1367                 }
1368         }
1369
1370         return min_index;
1371 }
1372
1373 int node_is_reduced(pbqp_node_t *node)
1374 {
1375         if (!reduced_bucket) return 0;
1376
1377         if (pbqp_node_get_degree(node) == 0) return 1;
1378
1379         return node_bucket_contains(reduced_bucket, node);
1380 }