Fixed a memory leak
[libfirm] / ir / be / beifg.c
1 /**
2  * @file   beifg.c
3  * @date   18.11.2005
4  * @author Sebastian Hack
5  *
6  * Copyright (C) 2005 Universitaet Karlsruhe
7  * Released under the GPL
8  */
9
10 #include <stdlib.h>
11
12 #ifdef HAVE_CONFIG_H
13 #include "config.h"
14 #endif
15
16 #ifdef HAVE_MALLOC_H
17 #include <malloc.h>
18 #endif
19
20 #ifdef __linux__
21 #include <malloc.h>
22 #endif /* __linux__ */
23
24 #ifdef HAVE_ALLOCA_H
25 #include <alloca.h>
26 #endif
27
28 #ifdef WITH_LIBCORE
29 #include <libcore/lc_opts.h>
30 #include <libcore/lc_opts_enum.h>
31 #include <libcore/lc_timing.h>
32 #endif /* WITH_LIBCORE */
33
34 #include "bitset.h"
35
36 #include "irgwalk.h"
37 #include "irnode_t.h"
38 #include "irprintf.h"
39 #include "irtools.h"
40 #include "beifg_t.h"
41 #include "beifg_impl.h"
42 #include "irphase.h"
43 #include "irphase_t.h"
44 #include "bechordal.h"
45
46 #include "becopystat.h"
47 #include "becopyopt.h"
48
49 /** Defines values for the ifg performance test */
50 #define BE_CH_PERFORMANCETEST_MIN_NODES (50)
51 #define BE_CH_PERFORMANCETEST_COUNT (500)
52
53 typedef struct _coloring_t coloring_t;
54
55 struct _coloring_t {
56         phase_t ph;
57         const arch_env_t *arch_env;
58         ir_graph *irg;
59 };
60
61 size_t (be_ifg_nodes_iter_size)(const void *self)
62 {
63         const be_ifg_t *ifg = self;
64         return ifg->impl->nodes_iter_size;
65 }
66
67 size_t (be_ifg_neighbours_iter_size)(const void *self)
68 {
69         const be_ifg_t *ifg = self;
70         return ifg->impl->neighbours_iter_size;
71 }
72
73 size_t (be_ifg_cliques_iter_size)(const void *self)
74 {
75         const be_ifg_t *ifg = self;
76         return ifg->impl->cliques_iter_size;
77 }
78
79 static void *regs_irn_data_init(phase_t *ph, ir_node *irn, void *data)
80 {
81         coloring_t *coloring = (coloring_t *) ph;
82         return (void *) arch_get_irn_register(coloring->arch_env, irn);
83 }
84
85 coloring_t *coloring_init(coloring_t *c, ir_graph *irg, const arch_env_t *aenv)
86 {
87         phase_init(&c->ph, "regs_map", irg, PHASE_DEFAULT_GROWTH, regs_irn_data_init);
88         c->arch_env = aenv;
89         c->irg = irg;
90         return c;
91 }
92
93 static void get_irn_color(ir_node *irn, void *c)
94 {
95         coloring_t *coloring = c;
96         phase_get_or_set_irn_data(&coloring->ph, irn);
97 }
98
99 static void restore_irn_color(ir_node *irn, void *c)
100 {
101         coloring_t *coloring = c;
102         const arch_register_t *reg = phase_get_irn_data(&coloring->ph, irn);
103         if(reg)
104                 arch_set_irn_register(coloring->arch_env, irn, reg);
105 }
106
107 void coloring_save(coloring_t *c)
108 {
109         irg_walk_graph(c->irg, NULL, get_irn_color, c);
110 }
111
112 void coloring_restore(coloring_t *c)
113 {
114         irg_walk_graph(c->irg, NULL, restore_irn_color, c);
115 }
116
117 void (be_ifg_free)(void *self)
118 {
119         be_ifg_t *ifg = self;
120         ifg->impl->free(self);
121 }
122
123 int (be_ifg_connected)(const void *self, const ir_node *a, const ir_node *b)
124 {
125         const be_ifg_t *ifg = self;
126         return ifg->impl->connected(self, a, b);
127 }
128
129 ir_node *(be_ifg_neighbours_begin)(const void *self, void *iter, const ir_node *irn)
130 {
131         const be_ifg_t *ifg = self;
132         return ifg->impl->neighbours_begin(self, iter, irn);
133 }
134
135 ir_node *(be_ifg_neighbours_next)(const void *self, void *iter)
136 {
137         const be_ifg_t *ifg = self;
138         return ifg->impl->neighbours_next(self, iter);
139 }
140
141 void (be_ifg_neighbours_break)(const void *self, void *iter)
142 {
143         const be_ifg_t *ifg = self;
144         ifg->impl->neighbours_break(self, iter);
145 }
146
147 ir_node *(be_ifg_nodes_begin)(const void *self, void *iter)
148 {
149         const be_ifg_t *ifg = self;
150         return ifg->impl->nodes_begin(self, iter);
151 }
152
153 ir_node *(be_ifg_nodes_next)(const void *self, void *iter)
154 {
155         const be_ifg_t *ifg = self;
156         return ifg->impl->nodes_next(self, iter);
157 }
158
159 void (be_ifg_nodes_break)(const void *self, void *iter)
160 {
161         const be_ifg_t *ifg = self;
162         ifg->impl->nodes_break(self, iter);
163 }
164
165 int (be_ifg_cliques_begin)(const void *self, void *iter, ir_node **buf)
166 {
167         const be_ifg_t *ifg = self;
168         return ifg->impl->cliques_begin(self, iter, buf);
169 }
170
171 int (be_ifg_cliques_next)(const void *self, void *iter)
172 {
173         const be_ifg_t *ifg = self;
174         return ifg->impl->cliques_next(self, iter);
175 }
176
177 void (be_ifg_cliques_break)(const void *self, void *iter)
178 {
179         const be_ifg_t *ifg = self;
180         ifg->impl->cliques_break(self, iter);
181 }
182
183 int (be_ifg_degree)(const void *self, const ir_node *irn)
184 {
185         const be_ifg_t *ifg = self;
186         return ifg->impl->degree(self, irn);
187 }
188
189
190 int be_ifg_is_simplicial(const be_ifg_t *ifg, const ir_node *irn)
191 {
192         int degree = be_ifg_degree(ifg, irn);
193         void *iter = be_ifg_neighbours_iter_alloca(ifg);
194
195         ir_node **neighbours = xmalloc(degree * sizeof(neighbours[0]));
196
197         ir_node *curr;
198         int i, j;
199
200         i = 0;
201         be_ifg_foreach_neighbour(ifg, iter, irn, curr)
202                 neighbours[i++] = curr;
203
204         for(i = 0; i < degree; ++i) {
205                 for(j = 0; j < i; ++j)
206                         if(!be_ifg_connected(ifg, neighbours[i], neighbours[j])) {
207                                 free(neighbours);
208                                 return 0;
209                         }
210         }
211
212
213         free(neighbours);
214         return 1;
215 }
216
217 void be_ifg_check(const be_ifg_t *ifg)
218 {
219         void *iter1 = be_ifg_nodes_iter_alloca(ifg);
220         void *iter2 = be_ifg_neighbours_iter_alloca(ifg);
221
222         ir_node *n, *m;
223         int node_count = 0;
224         int neighbours_count = 0;
225         int degree = 0;
226
227         /* count all nodes */
228         ir_printf("\n\nFound the following nodes in the graph %+F:\n\n", current_ir_graph);
229         be_ifg_foreach_node(ifg,iter1,n)
230         {
231                 node_count++;
232                 degree = be_ifg_degree(ifg, n);
233                 ir_printf("%d. %+F with degree: %d\n", node_count, n, degree);
234         }
235
236         ir_printf("\n\nNumber of nodes: %d\n\n", node_count);
237
238         /* Check, if all neighbours are indeed connected to the node. */
239         be_ifg_foreach_node(ifg, iter1, n)
240         {
241                 ir_printf("\n%+F; ", n);
242                 be_ifg_foreach_neighbour(ifg, iter2, n, m)
243                 {
244                         ir_printf("%+F; ", m);
245                         neighbours_count++;
246                         if(!be_ifg_connected(ifg, n, m))
247                                 ir_fprintf(stderr, "%+F is a neighbour of %+F but they are not connected!\n", n, m);
248                 }
249         }
250         ir_printf("\n\nFound %d nodes in the 'check neighbour section'\n", neighbours_count);
251 }
252
253 int be_ifg_check_get_node_count(const be_ifg_t *ifg)
254 {
255         void *iter = be_ifg_nodes_iter_alloca(ifg);
256         int node_count = 0;
257         ir_node *n;
258
259         be_ifg_foreach_node(ifg, iter, n)
260         {
261                 node_count++;
262         }
263
264         return node_count;
265 }
266
267 static int be_ifg_check_cmp_nodes(const void *a, const void *b)
268 {
269         const ir_node *node_a = *(ir_node **)a;
270         const ir_node *node_b = *(ir_node **)b;
271
272         int nr_a = node_a->node_nr;
273         int nr_b = node_b->node_nr;
274
275         return QSORT_CMP(nr_a, nr_b);
276 }
277
278 void be_ifg_check_sorted(const be_ifg_t *ifg)
279 {
280         void *iter1 = be_ifg_nodes_iter_alloca(ifg);
281         void *iter2 = be_ifg_neighbours_iter_alloca(ifg);
282
283         ir_node *n, *m;
284         const int node_count = be_ifg_check_get_node_count(ifg);
285         int neighbours_count = 0;
286         int i = 0;
287
288         ir_node **all_nodes = xmalloc(node_count * sizeof(all_nodes[0]));
289
290         be_ifg_foreach_node(ifg, iter1, n)
291         {
292                 if(!node_is_in_irgs_storage(ifg->env->irg, n))
293                 {
294                         printf ("+%F is in ifg but not in the current irg!",n);
295                         assert (node_is_in_irgs_storage(ifg->env->irg, n));
296                 }
297
298                 all_nodes[i] = n;
299                 i++;
300         }
301
302         qsort(all_nodes, node_count, sizeof(all_nodes[0]), be_ifg_check_cmp_nodes);
303
304         for (i = 0; i < node_count; i++)
305         {
306                 ir_node **neighbours = xmalloc(node_count * sizeof(neighbours[0]));
307                 int j = 0;
308                 int k = 0;
309                 int degree = 0;
310
311                 degree = be_ifg_degree(ifg, all_nodes[i]);
312
313                 be_ifg_foreach_neighbour(ifg, iter2, all_nodes[i], m)
314                 {
315                         neighbours[j] = m;
316                         j++;
317                 }
318
319                 qsort(neighbours, j, sizeof(neighbours[0]), be_ifg_check_cmp_nodes);
320
321                 ir_printf("%d. %+F's neighbours(%d): ", i+1, all_nodes[i], degree);
322
323                 for(k = 0; k < j; k++)
324                 {
325                         ir_printf("%+F, ", neighbours[k]);
326                 }
327
328                 ir_printf("\n");
329
330                 free(neighbours);
331         }
332
333         free(all_nodes);
334
335 }
336
337 void be_ifg_check_performance(be_chordal_env_t *chordal_env)
338 {
339         int tests = BE_CH_PERFORMANCETEST_COUNT;
340         coloring_t coloring;
341
342         int used_memory;
343
344         int i = 0;
345         int rt;
346         copy_opt_t *co;
347         be_ifg_t *old_if = chordal_env->ifg;
348
349         lc_timer_t *timer = lc_timer_register("getTime","get Time of copy minimization using the ifg");
350         unsigned long elapsed_usec = 0;
351
352         if ((int) get_irg_estimated_node_cnt >= BE_CH_PERFORMANCETEST_MIN_NODES)
353         {
354                 coloring_init(&coloring, chordal_env->irg, chordal_env->birg->main_env->arch_env);
355                 coloring_save(&coloring);
356
357                 lc_timer_reset(timer);
358
359                 for (i = 0; i<tests; i++) /* performance test with std */
360                 {
361
362                         used_memory = lc_get_heap_used_bytes();
363
364                         rt = lc_timer_enter_high_priority();
365                         lc_timer_start(timer);
366
367                         chordal_env->ifg = be_ifg_std_new(chordal_env);
368
369                         lc_timer_stop(timer);
370                         rt = lc_timer_leave_high_priority();
371
372                         used_memory = lc_get_heap_used_bytes() - used_memory;
373
374                         coloring_restore(&coloring);
375
376                         co = NULL;
377                         co = new_copy_opt(chordal_env, co_get_costs_loop_depth);
378                         co_build_ou_structure(co);
379                         co_build_graph_structure(co);
380
381                         rt = lc_timer_enter_high_priority();
382                         lc_timer_start(timer);
383
384                         co_solve_heuristic_new(co);
385
386                         lc_timer_stop(timer);
387                         rt = lc_timer_leave_high_priority();
388
389                         co_free_graph_structure(co);
390                         co_free_ou_structure(co);
391                         free_copy_opt(co);
392                         be_ifg_free(chordal_env->ifg);
393
394                 }
395
396                 elapsed_usec = lc_timer_elapsed_usec(timer);
397                 /* calculating average */
398                 elapsed_usec = elapsed_usec / tests;
399
400                 ir_printf("\nstd:; %+F; %u; %u ",current_ir_graph, used_memory, elapsed_usec);
401
402                 i=0;
403                 used_memory=0;
404                 elapsed_usec=0;
405
406                 for (i = 0; i<tests; i++)  /* performance test with clique */
407                 {
408                         used_memory = lc_get_heap_used_bytes();
409
410                         rt = lc_timer_enter_high_priority();
411                         lc_timer_start(timer);
412
413                         chordal_env->ifg = be_ifg_clique_new(chordal_env);
414
415                         lc_timer_stop(timer);
416                         rt = lc_timer_leave_high_priority();
417
418                         used_memory = lc_get_heap_used_bytes() - used_memory;
419
420                         coloring_restore(&coloring);
421
422                         co = NULL;
423                         co = new_copy_opt(chordal_env, co_get_costs_loop_depth);
424                         co_build_ou_structure(co);
425                         co_build_graph_structure(co);
426
427                         rt = lc_timer_enter_high_priority();
428                         lc_timer_start(timer);
429
430                         co_solve_heuristic_new(co);
431
432                         lc_timer_stop(timer);
433                         rt = lc_timer_leave_high_priority();
434
435                         co_free_graph_structure(co);
436                         co_free_ou_structure(co);
437                         free_copy_opt(co);
438                         be_ifg_free(chordal_env->ifg);
439
440                 }
441
442                 elapsed_usec = lc_timer_elapsed_usec(timer);
443                 /* calculating average */
444                 elapsed_usec = elapsed_usec / tests;
445
446                 ir_printf("\nclique:; %+F; %u; %u ",current_ir_graph, used_memory, elapsed_usec);
447
448                 i=0;
449                 used_memory=0;
450                 elapsed_usec=0;
451
452                 for (i = 0; i<tests; i++)  /* performance test with list */
453                 {
454                         used_memory = lc_get_heap_used_bytes();
455
456                         rt = lc_timer_enter_high_priority();
457                         lc_timer_start(timer);
458
459                         chordal_env->ifg = be_ifg_list_new(chordal_env);
460
461                         lc_timer_stop(timer);
462                         rt = lc_timer_leave_high_priority();
463
464                         used_memory = lc_get_heap_used_bytes() - used_memory;
465
466                         coloring_restore(&coloring);
467
468                         co = NULL;
469                         co = new_copy_opt(chordal_env, co_get_costs_loop_depth);
470                         co_build_ou_structure(co);
471                         co_build_graph_structure(co);
472
473                         rt = lc_timer_enter_high_priority();
474                         lc_timer_start(timer);
475
476                         co_solve_heuristic_new(co);
477
478                         lc_timer_stop(timer);
479                         rt = lc_timer_leave_high_priority();
480
481                         co_free_graph_structure(co);
482                         co_free_ou_structure(co);
483                         free_copy_opt(co);
484                         be_ifg_free(chordal_env->ifg);
485
486                 }
487
488                 elapsed_usec = lc_timer_elapsed_usec(timer);
489                 /* calculating average */
490                 elapsed_usec = elapsed_usec / tests;
491
492                 ir_printf("\nlist:; %+F; %u; %u ",current_ir_graph, used_memory, elapsed_usec);
493
494                 i=0;
495                 used_memory=0;
496                 elapsed_usec=0;
497
498                 for (i = 0; i<tests; i++)  /* performance test with pointer */
499                 {
500                         used_memory = lc_get_heap_used_bytes();
501
502                         rt = lc_timer_enter_high_priority();
503                         lc_timer_start(timer);
504
505                         chordal_env->ifg = be_ifg_pointer_new(chordal_env);
506
507                         lc_timer_stop(timer);
508                         rt = lc_timer_leave_high_priority();
509
510                         used_memory = lc_get_heap_used_bytes() - used_memory;
511
512                         coloring_restore(&coloring);
513
514                         co = NULL;
515                         co = new_copy_opt(chordal_env, co_get_costs_loop_depth);
516                         co_build_ou_structure(co);
517                         co_build_graph_structure(co);
518
519                         rt = lc_timer_enter_high_priority();
520                         lc_timer_start(timer);
521
522                         co_solve_heuristic_new(co);
523
524                         lc_timer_stop(timer);
525                         rt = lc_timer_leave_high_priority();
526
527                         co_free_graph_structure(co);
528                         co_free_ou_structure(co);
529                         free_copy_opt(co);
530                         be_ifg_free(chordal_env->ifg);
531
532                 }
533
534                 elapsed_usec = lc_timer_elapsed_usec(timer);
535                 /* calculating average */
536                 elapsed_usec = elapsed_usec / tests;
537
538                 ir_printf("\npointer:; %+F; %u; %u ",current_ir_graph, used_memory, elapsed_usec);
539
540                 i=0;
541                 used_memory=0;
542                 elapsed_usec=0;
543         }
544
545         chordal_env->ifg = old_if;
546 }
547
548 void be_ifg_dump_dot(be_ifg_t *ifg, ir_graph *irg, FILE *file, const be_ifg_dump_dot_cb_t *cb, void *self)
549 {
550         void *nodes_it  = be_ifg_nodes_iter_alloca(ifg);
551         void *neigh_it  = be_ifg_neighbours_iter_alloca(ifg);
552         bitset_t *nodes = bitset_malloc(get_irg_last_idx(irg));
553
554         ir_node *n, *m;
555
556         fprintf(file, "graph G {\n\tgraph [");
557         if(cb->graph_attr)
558                 cb->graph_attr(file, self);
559         fprintf(file, "];\n");
560
561         if(cb->at_begin)
562                 cb->at_begin(file, self);
563
564         be_ifg_foreach_node(ifg, nodes_it, n) {
565                 if(cb->is_dump_node && cb->is_dump_node(self, n)) {
566                         int idx = get_irn_idx(n);
567                         bitset_set(nodes, idx);
568                         fprintf(file, "\tnode [");
569                         if(cb->node_attr)
570                                 cb->node_attr(file, self, n);
571                         fprintf(file, "]; n%d;\n", idx);
572                 }
573         }
574
575         /* Check, if all neighbours are indeed connected to the node. */
576         be_ifg_foreach_node(ifg, nodes_it, n) {
577                 be_ifg_foreach_neighbour(ifg, neigh_it, n, m) {
578                         int n_idx = get_irn_idx(n);
579                         int m_idx = get_irn_idx(m);
580
581                         if(n_idx < m_idx && bitset_is_set(nodes, n_idx) && bitset_is_set(nodes, m_idx)) {
582                                 fprintf(file, "\tn%d -- n%d [", n_idx, m_idx);
583                                 if(cb->edge_attr)
584                                         cb->edge_attr(file, self, n, m);
585                                 fprintf(file, "];\n");
586                         }
587                 }
588         }
589
590         if(cb->at_end)
591                 cb->at_end(file, self);
592
593         fprintf(file, "}\n");
594         bitset_free(nodes);
595 }