- brute force solver need own back propagation
[libfirm] / heuristical_co.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Heuristic PBQP solver for SSA-based register allocation.
23  * @date    18.09.2009
24  * @author  Thomas Bersch
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "adt/array.h"
30 #include "assert.h"
31 #include "error.h"
32
33 #include "bucket.h"
34 #include "heuristical_co.h"
35 #include "optimal.h"
36 #if     KAPS_DUMP
37 #include "html_dumper.h"
38 #endif
39 #include "kaps.h"
40 #include "matrix.h"
41 #include "pbqp_edge.h"
42 #include "pbqp_edge_t.h"
43 #include "pbqp_node.h"
44 #include "pbqp_node_t.h"
45 #include "vector.h"
46
47 #include "plist.h"
48 #include "timing.h"
49
50 static void apply_RN_co(pbqp *pbqp, plist_t *rpeo)
51 {
52         pbqp_node   *node         = NULL;
53         unsigned     min_index    = 0;
54
55         assert(pbqp);
56
57         /* We want to reduce the first node in reverse perfect elimination order. */
58         do {
59                 /* get first element from reverse perfect elimination order */
60                 node = plist_first(rpeo)->data;
61                 /* remove element from reverse perfect elimination order */
62                 plist_erase(rpeo, plist_first(rpeo));
63                 /* insert node at the end of rpeo so the rpeo already exits after pbqp solving */
64                 plist_insert_back(rpeo, node);
65         } while(node_is_reduced(node));
66
67         assert(node);
68         assert(pbqp_node_get_degree(node) > 2);
69
70 #if     KAPS_DUMP
71         if (pbqp->dump_file) {
72                 char     txt[100];
73                 sprintf(txt, "RN-Reduction of Node n%d", node->index);
74                 dump_section(pbqp->dump_file, 2, txt);
75                 pbqp_dump_graph(pbqp);
76         }
77 #endif
78
79         min_index = get_local_minimal_alternative(pbqp, node);
80
81 #if     KAPS_DUMP
82         if (pbqp->dump_file) {
83                 fprintf(pbqp->dump_file, "node n%d is set to %d<br><br>\n",
84                                         node->index, min_index);
85         }
86 #endif
87
88 #if KAPS_STATISTIC
89         if (dump == 0) {
90                 FILE *fh = fopen("solutions.pb", "a");
91                 fprintf(fh, "[%u]", min_index);
92                 fclose(fh);
93                 pbqp->num_rn++;
94         }
95 #endif
96
97         /* Now that we found the local minimum set all other costs to infinity. */
98         select_alternative(node, min_index);
99 }
100
101 static void apply_heuristic_reductions_co(pbqp *pbqp, plist_t *rpeo)
102 {
103         #if KAPS_TIMING
104                 /* create timers */
105                 ir_timer_t *t_edge = ir_timer_register("be_pbqp_edges", "pbqp reduce independent edges");
106                 ir_timer_t *t_r0 = ir_timer_register("be_pbqp_r0", "pbqp R0 reductions");
107                 ir_timer_t *t_r1 = ir_timer_register("be_pbqp_r1", "pbqp R1 reductions");
108                 ir_timer_t *t_r2 = ir_timer_register("be_pbqp_r2", "pbqp R2 reductions");
109                 ir_timer_t *t_rn = ir_timer_register("be_pbqp_rN", "pbqp RN reductions");
110
111                 /* reset timers */
112                 ir_timer_reset(t_edge);
113                 ir_timer_reset(t_r0);
114                 ir_timer_reset(t_r1);
115                 ir_timer_reset(t_r2);
116                 ir_timer_reset(t_rn);
117         #endif
118
119         for (;;) {
120                 if (edge_bucket_get_length(edge_bucket) > 0) {
121                         #if KAPS_TIMING
122                                 ir_timer_start(t_r0);
123                         #endif
124
125                         apply_edge(pbqp);
126
127                         #if KAPS_TIMING
128                                 ir_timer_stop(t_r0);
129                         #endif
130                 } else if (node_bucket_get_length(node_buckets[1]) > 0) {
131                         #if KAPS_TIMING
132                                 ir_timer_start(t_r1);
133                         #endif
134
135                         apply_RI(pbqp);
136
137                         #if KAPS_TIMING
138                                 ir_timer_stop(t_r1);
139                         #endif
140                 } else if (node_bucket_get_length(node_buckets[2]) > 0) {
141                         #if KAPS_TIMING
142                                 ir_timer_start(t_r2);
143                         #endif
144
145                         apply_RII(pbqp);
146
147                         #if KAPS_TIMING
148                                 ir_timer_stop(t_r2);
149                         #endif
150                 } else if (node_bucket_get_length(node_buckets[3]) > 0) {
151                         #if KAPS_TIMING
152                                 ir_timer_start(t_rn);
153                         #endif
154
155                         apply_RN_co(pbqp, rpeo);
156
157                         #if KAPS_TIMING
158                                 ir_timer_stop(t_rn);
159                         #endif
160                 } else {
161                         #if KAPS_TIMING
162                                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_edge), (double)ir_timer_elapsed_usec(t_edge) / 1000.0);
163                                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_r0), (double)ir_timer_elapsed_usec(t_r0) / 1000.0);
164                                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_r1), (double)ir_timer_elapsed_usec(t_r1) / 1000.0);
165                                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_r2), (double)ir_timer_elapsed_usec(t_r2) / 1000.0);
166                                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_rn), (double)ir_timer_elapsed_usec(t_rn) / 1000.0);
167                         #endif
168
169                         return;
170                 }
171         }
172 }
173
174 void solve_pbqp_heuristical_co(pbqp *pbqp, plist_t *rpeo)
175 {
176         /* Reduce nodes degree ... */
177         initial_simplify_edges(pbqp);
178
179         /* ... and put node into bucket representing their degree. */
180         fill_node_buckets(pbqp);
181
182         #if KAPS_STATISTIC
183                 FILE *fh = fopen("solutions.pb", "a");
184                 fprintf(fh, "Solution");
185                 fclose(fh);
186         #endif
187
188         apply_heuristic_reductions_co(pbqp, rpeo);
189
190         pbqp->solution = determine_solution(pbqp);
191
192         #if KAPS_STATISTIC
193                 fh = fopen("solutions.pb", "a");
194                 fprintf(fh, ": %lld RE:%u R0:%u R1:%u R2:%u RN/BF:%u\n", pbqp->solution,
195                                         pbqp->num_edges, pbqp->num_r0, pbqp->num_r1, pbqp->num_r2,
196                                         pbqp->num_rn);
197                 fclose(fh);
198         #endif
199
200         /* Solve reduced nodes. */
201         back_propagate(pbqp);
202
203         free_buckets();
204 }