solve function which follows a reverse perfect elimination order
[libfirm] / heuristical.c
1 #include "adt/array.h"
2 #include "assert.h"
3 #include "error.h"
4
5 #include "bucket.h"
6 #include "heuristical.h"
7 #if     KAPS_DUMP
8 #include "html_dumper.h"
9 #endif
10 #include "kaps.h"
11 #include "matrix.h"
12 #include "pbqp_edge.h"
13 #include "pbqp_edge_t.h"
14 #include "pbqp_node.h"
15 #include "pbqp_node_t.h"
16 #include "vector.h"
17
18 #include "plist.h"
19
20 static pbqp_edge **edge_bucket;
21 static pbqp_node **node_buckets[4];
22 static pbqp_node **reduced_bucket = NULL;
23 static int         buckets_filled = 0;
24
25 #if KAPS_STATISTIC
26 static int dump = 0;
27 #endif
28
29 /* Forward declarations. */
30 static void apply_Brute_Force(pbqp *pbqp);
31
32 static void insert_into_edge_bucket(pbqp_edge *edge)
33 {
34         if (edge_bucket_contains(edge_bucket, edge)) {
35                 /* Edge is already inserted. */
36                 return;
37         }
38
39         edge_bucket_insert(&edge_bucket, edge);
40 }
41
42 static void init_buckets(void)
43 {
44         int i;
45
46         edge_bucket_init(&edge_bucket);
47         node_bucket_init(&reduced_bucket);
48
49         for (i = 0; i < 4; ++i) {
50                 node_bucket_init(&node_buckets[i]);
51         }
52 }
53
54 static void free_buckets(void)
55 {
56         int i;
57
58         for (i = 0; i < 4; ++i) {
59                 node_bucket_free(&node_buckets[i]);
60         }
61
62         edge_bucket_free(&edge_bucket);
63         node_bucket_free(&reduced_bucket);
64
65         buckets_filled = 0;
66 }
67
68 static void fill_node_buckets(pbqp *pbqp)
69 {
70         unsigned node_index;
71         unsigned node_len;
72
73         assert(pbqp);
74         node_len = pbqp->num_nodes;
75
76         for (node_index = 0; node_index < node_len; ++node_index) {
77                 unsigned   degree;
78                 pbqp_node *node = get_node(pbqp, node_index);
79
80                 if (!node) continue;
81
82                 degree = pbqp_node_get_degree(node);
83
84                 /* We have only one bucket for nodes with arity >= 3. */
85                 if (degree > 3) {
86                         degree = 3;
87                 }
88
89                 node_bucket_insert(&node_buckets[degree], node);
90         }
91
92         buckets_filled = 1;
93 }
94
95 static void normalize_towards_source(pbqp *pbqp, pbqp_edge *edge)
96 {
97         pbqp_matrix    *mat;
98         pbqp_node      *src_node;
99         pbqp_node      *tgt_node;
100         vector         *src_vec;
101         vector         *tgt_vec;
102         int             src_len;
103         int             tgt_len;
104         int             src_index;
105
106         assert(pbqp);
107         assert(edge);
108
109         src_node = edge->src;
110         tgt_node = edge->tgt;
111         assert(src_node);
112         assert(tgt_node);
113
114         src_vec = src_node->costs;
115         tgt_vec = tgt_node->costs;
116         assert(src_vec);
117         assert(tgt_vec);
118
119         src_len = src_vec->len;
120         tgt_len = tgt_vec->len;
121         assert(src_len > 0);
122         assert(tgt_len > 0);
123
124         mat = edge->costs;
125         assert(mat);
126
127         /* Normalize towards source node. */
128         for (src_index = 0; src_index < src_len; ++src_index) {
129                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
130
131                 if (min != 0) {
132                         if (src_vec->entries[src_index].data == INF_COSTS) {
133                                 pbqp_matrix_set_row_value(mat, src_index, 0);
134                         } else {
135                                 pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
136                         }
137                         src_vec->entries[src_index].data = pbqp_add(
138                                         src_vec->entries[src_index].data, min);
139
140                         if (min == INF_COSTS) {
141                                 unsigned edge_index;
142                                 unsigned edge_len = pbqp_node_get_degree(src_node);
143
144                                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
145                                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
146                                         if (edge_candidate != edge) {
147                                                 insert_into_edge_bucket(edge_candidate);
148                                         }
149                                 }
150                         }
151                 }
152         }
153 }
154
155 static void normalize_towards_target(pbqp *pbqp, pbqp_edge *edge)
156 {
157         pbqp_matrix    *mat;
158         pbqp_node      *src_node;
159         pbqp_node      *tgt_node;
160         vector         *src_vec;
161         vector         *tgt_vec;
162         int             src_len;
163         int             tgt_len;
164         int             tgt_index;
165
166         assert(pbqp);
167         assert(edge);
168
169         src_node = edge->src;
170         tgt_node = edge->tgt;
171         assert(src_node);
172         assert(tgt_node);
173
174         src_vec = src_node->costs;
175         tgt_vec = tgt_node->costs;
176         assert(src_vec);
177         assert(tgt_vec);
178
179         src_len = src_vec->len;
180         tgt_len = tgt_vec->len;
181         assert(src_len > 0);
182         assert(tgt_len > 0);
183
184         mat = edge->costs;
185         assert(mat);
186
187         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
188                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
189
190                 if (min != 0) {
191                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
192                                 pbqp_matrix_set_col_value(mat, tgt_index, 0);
193                         } else {
194                                 pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
195                         }
196                         tgt_vec->entries[tgt_index].data = pbqp_add(
197                                         tgt_vec->entries[tgt_index].data, min);
198
199                         if (min == INF_COSTS) {
200                                 unsigned edge_index;
201                                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
202
203                                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
204                                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
205                                         if (edge_candidate != edge) {
206                                                 insert_into_edge_bucket(edge_candidate);
207                                         }
208                                 }
209                         }
210                 }
211         }
212 }
213
214 static void reorder_node(pbqp_node *node)
215 {
216         unsigned    degree     = pbqp_node_get_degree(node);
217         /* Assume node lost one incident edge. */
218         unsigned    old_degree = degree + 1;
219
220         if (!buckets_filled) return;
221
222         /* Same bucket as before */
223         if (degree > 2) return;
224
225         if (!node_bucket_contains(node_buckets[old_degree], node)) {
226                 /* Old arity is new arity, so we have nothing to do. */
227                 assert(node_bucket_contains(node_buckets[degree], node));
228                 return;
229         }
230
231         /* Delete node from old bucket... */
232         node_bucket_remove(&node_buckets[old_degree], node);
233
234         /* ..and add to new one. */
235         node_bucket_insert(&node_buckets[degree], node);
236 }
237
238 #if 0
239 static void check_melting_possibility(pbqp *pbqp, pbqp_edge *edge)
240 {
241         pbqp_matrix    *mat;
242         pbqp_node      *src_node;
243         pbqp_node      *tgt_node;
244         vector         *src_vec;
245         vector         *tgt_vec;
246         int             src_len;
247         int             tgt_len;
248         int             src_index;
249         int             tgt_index;
250
251         assert(pbqp);
252         assert(edge);
253
254         src_node = edge->src;
255         tgt_node = edge->tgt;
256         assert(src_node);
257         assert(tgt_node);
258
259         src_vec = src_node->costs;
260         tgt_vec = tgt_node->costs;
261         assert(src_vec);
262         assert(tgt_vec);
263
264         src_len = src_vec->len;
265         tgt_len = tgt_vec->len;
266         assert(src_len > 0);
267         assert(tgt_len > 0);
268
269         mat = edge->costs;
270         assert(mat);
271
272         if (src_len == 1 && tgt_len == 1) {
273                 //panic("Something is wrong");
274         }
275
276         int allRowsOk = 1;
277         for (src_index = 0; src_index < src_len; ++src_index) {
278                 int onlyOneZero = 0;
279                 if (src_vec->entries[src_index].data == INF_COSTS) {
280                         continue;
281                 }
282                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
283                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
284                                 continue;
285                         }
286                         if (mat->entries[src_index * tgt_len + tgt_index] == 0) {
287                                 if (onlyOneZero) {
288                                         onlyOneZero = 0;
289                                         break;
290                                 } else {
291                                         onlyOneZero = 1;
292                                         continue;
293                                 }
294                         }
295                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS) {
296                                 continue;
297                         }
298                         onlyOneZero = 0;
299                         break;
300                 }
301                 allRowsOk &= onlyOneZero;
302         }
303
304         int allColsOk = 1;
305         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
306                 int onlyOneZero = 0;
307                 if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
308                         continue;
309                 }
310                 for (src_index = 0; src_index < src_len; ++src_index) {
311                         if (src_vec->entries[src_index].data == INF_COSTS) {
312                                 continue;
313                         }
314                         if (mat->entries[src_index * tgt_len + tgt_index] == 0) {
315                                 if (onlyOneZero) {
316                                         onlyOneZero = 0;
317                                         break;
318                                 } else {
319                                         onlyOneZero = 1;
320                                         continue;
321                                 }
322                         }
323                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS) {
324                                 continue;
325                         }
326                         onlyOneZero = 0;
327                         break;
328                 }
329                 allColsOk &= onlyOneZero;
330         }
331
332         if (allRowsOk && allColsOk) {
333                 panic("Hurray");
334         }
335 }
336 #endif
337
338 static void simplify_edge(pbqp *pbqp, pbqp_edge *edge)
339 {
340         pbqp_matrix    *mat;
341         pbqp_node      *src_node;
342         pbqp_node      *tgt_node;
343         vector         *src_vec;
344         vector         *tgt_vec;
345         int             src_len;
346         int             tgt_len;
347
348         assert(pbqp);
349         assert(edge);
350
351         src_node = edge->src;
352         tgt_node = edge->tgt;
353         assert(src_node);
354         assert(tgt_node);
355
356         /* If edge are already deleted, we have nothing to do. */
357         if (!is_connected(src_node, edge) || !is_connected(tgt_node, edge))
358                 return;
359
360 #if     KAPS_DUMP
361         if (pbqp->dump_file) {
362                 char txt[100];
363                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
364                 dump_section(pbqp->dump_file, 3, txt);
365         }
366 #endif
367
368         src_vec = src_node->costs;
369         tgt_vec = tgt_node->costs;
370         assert(src_vec);
371         assert(tgt_vec);
372
373         src_len = src_vec->len;
374         tgt_len = tgt_vec->len;
375         assert(src_len > 0);
376         assert(tgt_len > 0);
377
378         mat = edge->costs;
379         assert(mat);
380
381 #if     KAPS_DUMP
382         if (pbqp->dump_file) {
383                 fputs("Input:<br>\n", pbqp->dump_file);
384                 dump_simplifyedge(pbqp, edge);
385         }
386 #endif
387
388         normalize_towards_source(pbqp, edge);
389         normalize_towards_target(pbqp, edge);
390
391 #if     KAPS_DUMP
392         if (pbqp->dump_file) {
393                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
394                 dump_simplifyedge(pbqp, edge);
395         }
396 #endif
397
398         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
399 #if     KAPS_DUMP
400                 if (pbqp->dump_file) {
401                         fputs("edge has been eliminated<br>\n", pbqp->dump_file);
402                 }
403 #endif
404
405 #if KAPS_STATISTIC
406                 if (dump == 0) {
407                         pbqp->num_edges++;
408                 }
409 #endif
410
411                 delete_edge(edge);
412                 reorder_node(src_node);
413                 reorder_node(tgt_node);
414         }
415 }
416
417 static void initial_simplify_edges(pbqp *pbqp)
418 {
419         unsigned node_index;
420         unsigned node_len;
421
422         assert(pbqp);
423
424 #if     KAPS_DUMP
425         if (pbqp->dump_file) {
426                 pbqp_dump_input(pbqp);
427                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
428         }
429 #endif
430
431         node_len = pbqp->num_nodes;
432
433         init_buckets();
434
435         /* First simplify all edges. */
436         for (node_index = 0; node_index < node_len; ++node_index) {
437                 unsigned    edge_index;
438                 pbqp_node  *node = get_node(pbqp, node_index);
439                 pbqp_edge **edges;
440                 unsigned    edge_len;
441
442                 if (!node) continue;
443
444                 edges = node->edges;
445                 edge_len = pbqp_node_get_degree(node);
446
447                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
448                         pbqp_edge *edge = edges[edge_index];
449
450                         /* Simplify only once per edge. */
451                         if (node != edge->src) continue;
452
453                         simplify_edge(pbqp, edge);
454                 }
455         }
456 }
457
458 static num determine_solution(pbqp *pbqp)
459 {
460         unsigned node_index;
461         unsigned node_len;
462         num      solution   = 0;
463 #if     KAPS_DUMP
464         FILE     *file;
465 #endif
466
467         assert(pbqp);
468
469 #if     KAPS_DUMP
470         file = pbqp->dump_file;
471
472         if (file) {
473                 dump_section(file, 1, "4. Determine Solution/Minimum");
474                 dump_section(file, 2, "4.1. Trivial Solution");
475         }
476 #endif
477
478         /* Solve trivial nodes and calculate solution. */
479         node_len = node_bucket_get_length(node_buckets[0]);
480
481 #if KAPS_STATISTIC
482         if (dump == 0) {
483                 pbqp->num_r0 = node_len;
484         }
485 #endif
486
487         for (node_index = 0; node_index < node_len; ++node_index) {
488                 pbqp_node *node = node_buckets[0][node_index];
489                 assert(node);
490
491                 node->solution = vector_get_min_index(node->costs);
492                 solution       = pbqp_add(solution,
493                                 node->costs->entries[node->solution].data);
494
495 #if     KAPS_DUMP
496                 if (file) {
497                         fprintf(file, "node n%d is set to %d<br>\n", node->index, node->solution);
498                         dump_node(file, node);
499                 }
500 #endif
501         }
502
503 #if     KAPS_DUMP
504         if (file) {
505                 dump_section(file, 2, "Minimum");
506                 fprintf(file, "Minimum is equal to %lld.", solution);
507         }
508 #endif
509
510         return solution;
511 }
512
513 static void back_propagate(pbqp *pbqp)
514 {
515         unsigned node_index;
516         unsigned node_len   = node_bucket_get_length(reduced_bucket);
517
518         assert(pbqp);
519
520 #if     KAPS_DUMP
521         if (pbqp->dump_file) {
522                 dump_section(pbqp->dump_file, 2, "Back Propagation");
523         }
524 #endif
525
526         for (node_index = node_len; node_index > 0; --node_index) {
527                 pbqp_node *node = reduced_bucket[node_index - 1];
528
529                 switch (pbqp_node_get_degree(node)) {
530                         case 1:
531                                 back_propagate_RI(pbqp, node);
532                                 break;
533                         case 2:
534                                 back_propagate_RII(pbqp, node);
535                                 break;
536                         default:
537                                 panic("Only nodes with degree one or two should be in this bucket");
538                                 break;
539                 }
540         }
541 }
542
543 static void apply_heuristic_reductions(pbqp *pbqp)
544 {
545         for (;;) {
546                 if (edge_bucket_get_length(edge_bucket) > 0) {
547                         apply_edge(pbqp);
548                 } else if (node_bucket_get_length(node_buckets[1]) > 0) {
549                         apply_RI(pbqp);
550                 } else if (node_bucket_get_length(node_buckets[2]) > 0) {
551                         apply_RII(pbqp);
552                 } else if (node_bucket_get_length(node_buckets[3]) > 0) {
553                         apply_RN(pbqp);
554                 } else {
555                         return;
556                 }
557         }
558 }
559
560 static void apply_heuristic_reductions_co(pbqp *pbqp, plist_t *rpeo)
561 {
562         for (;;) {
563                 if (edge_bucket_get_length(edge_bucket) > 0) {
564                         apply_edge(pbqp);
565                 } else if (node_bucket_get_length(node_buckets[1]) > 0) {
566                         apply_RI(pbqp);
567 //                      apply_RN_co(pbqp, rpeo);
568                 } else if (node_bucket_get_length(node_buckets[2]) > 0) {
569                         apply_RII(pbqp);
570 //                      apply_RN_co(pbqp, rpeo);
571                 } else if (node_bucket_get_length(node_buckets[3]) > 0) {
572                         apply_RN_co(pbqp, rpeo);
573                 } else {
574                         return;
575                 }
576         }
577 }
578
579 void solve_pbqp_heuristical(pbqp *pbqp)
580 {
581         /* Reduce nodes degree ... */
582         initial_simplify_edges(pbqp);
583
584         /* ... and put node into bucket representing their degree. */
585         fill_node_buckets(pbqp);
586
587 #if KAPS_STATISTIC
588         FILE *fh = fopen("solutions.pb", "a");
589         fprintf(fh, "Solution");
590         fclose(fh);
591 #endif
592
593         apply_heuristic_reductions(pbqp);
594
595         pbqp->solution = determine_solution(pbqp);
596
597 #if KAPS_STATISTIC
598         fh = fopen("solutions.pb", "a");
599         fprintf(fh, ": %lld RE:%u R0:%u R1:%u R2:%u RN/BF:%u\n", pbqp->solution,
600                                 pbqp->num_edges, pbqp->num_r0, pbqp->num_r1, pbqp->num_r2,
601                                 pbqp->num_rn);
602         fclose(fh);
603 #endif
604
605         /* Solve reduced nodes. */
606         back_propagate(pbqp);
607
608         free_buckets();
609 }
610
611 void solve_pbqp_heuristical_co(pbqp *pbqp, plist_t *rpeo) {
612         /* Reduce nodes degree ... */
613                 initial_simplify_edges(pbqp);
614
615                 /* ... and put node into bucket representing their degree. */
616                 fill_node_buckets(pbqp);
617
618         #if KAPS_STATISTIC
619                 FILE *fh = fopen("solutions.pb", "a");
620                 fprintf(fh, "Solution");
621                 fclose(fh);
622         #endif
623
624                 apply_heuristic_reductions_co(pbqp, rpeo);
625
626                 pbqp->solution = determine_solution(pbqp);
627
628         #if KAPS_STATISTIC
629                 fh = fopen("solutions.pb", "a");
630                 fprintf(fh, ": %lld RE:%u R0:%u R1:%u R2:%u RN/BF:%u\n", pbqp->solution,
631                                         pbqp->num_edges, pbqp->num_r0, pbqp->num_r1, pbqp->num_r2,
632                                         pbqp->num_rn);
633                 fclose(fh);
634         #endif
635
636                 /* Solve reduced nodes. */
637                 back_propagate(pbqp);
638
639                 free_buckets();
640 }
641
642 void apply_edge(pbqp *pbqp)
643 {
644         pbqp_edge *edge = edge_bucket_pop(&edge_bucket);
645
646         simplify_edge(pbqp, edge);
647 }
648
649 void apply_RI(pbqp *pbqp)
650 {
651         pbqp_node   *node       = node_bucket_pop(&node_buckets[1]);
652         pbqp_edge   *edge       = node->edges[0];
653         pbqp_matrix *mat        = edge->costs;
654         int          is_src     = edge->src == node;
655         pbqp_node   *other_node;
656
657         assert(pbqp_node_get_degree(node) == 1);
658
659         if (is_src) {
660                 other_node = edge->tgt;
661         } else {
662                 other_node = edge->src;
663         }
664
665 #if     KAPS_DUMP
666         if (pbqp->dump_file) {
667                 char     txt[100];
668                 sprintf(txt, "RI-Reduction of Node n%d", node->index);
669                 dump_section(pbqp->dump_file, 2, txt);
670                 pbqp_dump_graph(pbqp);
671                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
672                 dump_node(pbqp->dump_file, node);
673                 dump_node(pbqp->dump_file, other_node);
674                 dump_edge(pbqp->dump_file, edge);
675         }
676 #endif
677
678         if (is_src) {
679                 pbqp_matrix_add_to_all_cols(mat, node->costs);
680                 normalize_towards_target(pbqp, edge);
681         } else {
682                 pbqp_matrix_add_to_all_rows(mat, node->costs);
683                 normalize_towards_source(pbqp, edge);
684         }
685         disconnect_edge(other_node, edge);
686
687 #if     KAPS_DUMP
688         if (pbqp->dump_file) {
689                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
690                 dump_node(pbqp->dump_file, other_node);
691         }
692 #endif
693
694         reorder_node(other_node);
695
696 #if KAPS_STATISTIC
697         if (dump == 0) {
698                 pbqp->num_r1++;
699         }
700 #endif
701
702         /* Add node to back propagation list. */
703         node_bucket_insert(&reduced_bucket, node);
704 }
705
706 void apply_RII(pbqp *pbqp)
707 {
708         pbqp_node   *node       = node_bucket_pop(&node_buckets[2]);
709         pbqp_edge   *src_edge   = node->edges[0];
710         pbqp_edge   *tgt_edge   = node->edges[1];
711         int          src_is_src = src_edge->src == node;
712         int          tgt_is_src = tgt_edge->src == node;
713         pbqp_matrix *src_mat;
714         pbqp_matrix *tgt_mat;
715         pbqp_node   *src_node;
716         pbqp_node   *tgt_node;
717         pbqp_matrix *mat;
718         vector      *vec;
719         vector      *node_vec;
720         vector      *src_vec;
721         vector      *tgt_vec;
722         unsigned     col_index;
723         unsigned     col_len;
724         unsigned     row_index;
725         unsigned     row_len;
726         unsigned     node_len;
727
728         assert(pbqp);
729         assert(pbqp_node_get_degree(node) == 2);
730
731         if (src_is_src) {
732                 src_node = src_edge->tgt;
733         } else {
734                 src_node = src_edge->src;
735         }
736
737         if (tgt_is_src) {
738                 tgt_node = tgt_edge->tgt;
739         } else {
740                 tgt_node = tgt_edge->src;
741         }
742
743         /* Swap nodes if necessary. */
744         if (tgt_node->index < src_node->index) {
745                 pbqp_node *tmp_node;
746                 pbqp_edge *tmp_edge;
747
748                 tmp_node = src_node;
749                 src_node = tgt_node;
750                 tgt_node = tmp_node;
751
752                 tmp_edge = src_edge;
753                 src_edge = tgt_edge;
754                 tgt_edge = tmp_edge;
755
756                 src_is_src = src_edge->src == node;
757                 tgt_is_src = tgt_edge->src == node;
758         }
759
760 #if     KAPS_DUMP
761         if (pbqp->dump_file) {
762                 char     txt[100];
763                 sprintf(txt, "RII-Reduction of Node n%d", node->index);
764                 dump_section(pbqp->dump_file, 2, txt);
765                 pbqp_dump_graph(pbqp);
766                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
767                 dump_node(pbqp->dump_file, src_node);
768                 dump_edge(pbqp->dump_file, src_edge);
769                 dump_node(pbqp->dump_file, node);
770                 dump_edge(pbqp->dump_file, tgt_edge);
771                 dump_node(pbqp->dump_file, tgt_node);
772         }
773 #endif
774
775         src_mat = src_edge->costs;
776         tgt_mat = tgt_edge->costs;
777
778         src_vec  = src_node->costs;
779         tgt_vec  = tgt_node->costs;
780         node_vec = node->costs;
781
782         row_len  = src_vec->len;
783         col_len  = tgt_vec->len;
784         node_len = node_vec->len;
785
786         mat = pbqp_matrix_alloc(pbqp, row_len, col_len);
787
788         for (row_index = 0; row_index < row_len; ++row_index) {
789                 for (col_index = 0; col_index < col_len; ++col_index) {
790                         vec = vector_copy(pbqp, node_vec);
791
792                         if (src_is_src) {
793                                 vector_add_matrix_col(vec, src_mat, row_index);
794                         } else {
795                                 vector_add_matrix_row(vec, src_mat, row_index);
796                         }
797
798                         if (tgt_is_src) {
799                                 vector_add_matrix_col(vec, tgt_mat, col_index);
800                         } else {
801                                 vector_add_matrix_row(vec, tgt_mat, col_index);
802                         }
803
804                         mat->entries[row_index * col_len + col_index] = vector_get_min(vec);
805
806                         obstack_free(&pbqp->obstack, vec);
807                 }
808         }
809
810         pbqp_edge *edge = get_edge(pbqp, src_node->index, tgt_node->index);
811
812         /* Disconnect node. */
813         disconnect_edge(src_node, src_edge);
814         disconnect_edge(tgt_node, tgt_edge);
815
816 #if KAPS_STATISTIC
817         if (dump == 0) {
818                 pbqp->num_r2++;
819         }
820 #endif
821
822         /* Add node to back propagation list. */
823         node_bucket_insert(&reduced_bucket, node);
824
825         if (edge == NULL) {
826                 edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat);
827         } else {
828                 pbqp_matrix_add(edge->costs, mat);
829
830                 /* Free local matrix. */
831                 obstack_free(&pbqp->obstack, mat);
832
833                 reorder_node(src_node);
834                 reorder_node(tgt_node);
835         }
836
837 #if     KAPS_DUMP
838         if (pbqp->dump_file) {
839                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
840                 dump_edge(pbqp->dump_file, edge);
841         }
842 #endif
843
844         /* Edge has changed so we simplify it. */
845         simplify_edge(pbqp, edge);
846 }
847
848 static void select_alternative(pbqp_node *node, unsigned selected_index)
849 {
850         unsigned  edge_index;
851         unsigned  node_index;
852         unsigned  node_len;
853         vector   *node_vec;
854         unsigned  max_degree = pbqp_node_get_degree(node);
855
856         assert(node);
857         node->solution = selected_index;
858         node_vec = node->costs;
859         node_len = node_vec->len;
860         assert(selected_index < node_len);
861
862         /* Set all other costs to infinity. */
863         for (node_index = 0; node_index < node_len; ++node_index) {
864                 if (node_index != selected_index) {
865                         node_vec->entries[node_index].data = INF_COSTS;
866                 }
867         }
868
869         /* Add all incident edges to edge bucket, since they are now independent. */
870         for (edge_index = 0; edge_index < max_degree; ++edge_index) {
871                 insert_into_edge_bucket(node->edges[edge_index]);
872         }
873 }
874
875 static pbqp_node *get_node_with_max_degree(void)
876 {
877         pbqp_node  **bucket       = node_buckets[3];
878         unsigned     bucket_len   = node_bucket_get_length(bucket);
879         unsigned     bucket_index;
880         unsigned     max_degree   = 0;
881         pbqp_node   *result       = NULL;
882
883         for (bucket_index = 0; bucket_index < bucket_len; ++bucket_index) {
884                 pbqp_node *candidate = bucket[bucket_index];
885                 unsigned   degree    = pbqp_node_get_degree(candidate);
886
887                 if (degree > max_degree) {
888                         result = candidate;
889                         max_degree = degree;
890                 }
891         }
892
893         return result;
894 }
895
896 static unsigned get_local_minimal_alternative(pbqp *pbqp, pbqp_node *node)
897 {
898         pbqp_edge   *edge;
899         vector      *node_vec;
900         vector      *vec;
901         pbqp_matrix *mat;
902         unsigned     edge_index;
903         unsigned     max_degree   = 0;
904         unsigned     node_index;
905         unsigned     node_len;
906         unsigned     min_index    = 0;
907         num          min          = INF_COSTS;
908         int          is_src;
909
910         assert(pbqp);
911         assert(node);
912         node_vec = node->costs;
913         node_len = node_vec->len;
914
915         for (node_index = 0; node_index < node_len; ++node_index) {
916                 num value = node_vec->entries[node_index].data;
917
918                 for (edge_index = 0; edge_index < max_degree; ++edge_index) {
919                         edge   = node->edges[edge_index];
920                         mat    = edge->costs;
921                         is_src = edge->src == node;
922
923                         if (is_src) {
924                                 vec = vector_copy(pbqp, edge->tgt->costs);
925                                 vector_add_matrix_row(vec, mat, node_index);
926                         } else {
927                                 vec = vector_copy(pbqp, edge->src->costs);
928                                 vector_add_matrix_col(vec, mat, node_index);
929                         }
930
931                         value = pbqp_add(value, vector_get_min(vec));
932
933                         obstack_free(&pbqp->obstack, vec);
934                 }
935
936                 if (value < min) {
937                         min = value;
938                         min_index = node_index;
939                 }
940         }
941
942         return min_index;
943 }
944
945 void apply_RN(pbqp *pbqp)
946 {
947 //      printf("### ---- RN\n");
948
949         pbqp_node   *node         = NULL;
950         unsigned     min_index    = 0;
951
952         assert(pbqp);
953
954         /* We want to reduce a node with maximum degree. */
955         node = get_node_with_max_degree();
956         assert(node);
957         assert(pbqp_node_get_degree(node) > 2);
958
959 #if     KAPS_DUMP
960         if (pbqp->dump_file) {
961                 char     txt[100];
962                 sprintf(txt, "RN-Reduction of Node n%d", node->index);
963                 dump_section(pbqp->dump_file, 2, txt);
964                 pbqp_dump_graph(pbqp);
965         }
966 #endif
967
968         min_index = get_local_minimal_alternative(pbqp, node);
969
970 #if     KAPS_DUMP
971         if (pbqp->dump_file) {
972                 fprintf(pbqp->dump_file, "node n%d is set to %d<br><br>\n",
973                                         node->index, min_index);
974         }
975 #endif
976
977 #if KAPS_STATISTIC
978         if (dump == 0) {
979                 FILE *fh = fopen("solutions.pb", "a");
980                 fprintf(fh, "[%u]", min_index);
981                 fclose(fh);
982                 pbqp->num_rn++;
983         }
984 #endif
985
986         /* Now that we found the local minimum set all other costs to infinity. */
987         select_alternative(node, min_index);
988 }
989
990 void apply_RN_co(pbqp *pbqp, plist_t *rpeo)
991 {
992 //      printf("### ---- RN\n");
993
994         pbqp_node   *node         = NULL;
995         unsigned     min_index    = 0;
996
997         assert(pbqp);
998
999         /* We want to reduce the first node in reverse perfect elimination order. */
1000         do {
1001                 /* get first element from reverse perfect elimination order */
1002                 node = plist_first(rpeo)->data;
1003                 /* remove element from reverse perfect elimination order */
1004                 plist_erase(rpeo, plist_first(rpeo));
1005         } while(node_is_reduced(node));
1006
1007 //      node = plist_first(rpeo)->data;
1008 //      plist_erase(rpeo, plist_first(rpeo));
1009
1010         assert(node);
1011         assert(pbqp_node_get_degree(node) > 2);
1012
1013 #if     KAPS_DUMP
1014         if (pbqp->dump_file) {
1015                 char     txt[100];
1016                 sprintf(txt, "RN-Reduction of Node n%d", node->index);
1017                 dump_section(pbqp->dump_file, 2, txt);
1018                 pbqp_dump_graph(pbqp);
1019         }
1020 #endif
1021
1022         min_index = get_local_minimal_alternative(pbqp, node);
1023
1024 #if     KAPS_DUMP
1025         if (pbqp->dump_file) {
1026                 fprintf(pbqp->dump_file, "node n%d is set to %d<br><br>\n",
1027                                         node->index, min_index);
1028         }
1029 #endif
1030
1031 #if KAPS_STATISTIC
1032         if (dump == 0) {
1033                 FILE *fh = fopen("solutions.pb", "a");
1034                 fprintf(fh, "[%u]", min_index);
1035                 fclose(fh);
1036                 pbqp->num_rn++;
1037         }
1038 #endif
1039
1040         /* Now that we found the local minimum set all other costs to infinity. */
1041         select_alternative(node, min_index);
1042
1043
1044 }
1045
1046 static void apply_brute_force_reductions(pbqp *pbqp)
1047 {
1048         for (;;) {
1049                 if (edge_bucket_get_length(edge_bucket) > 0) {
1050                         apply_edge(pbqp);
1051                 } else if (node_bucket_get_length(node_buckets[1]) > 0) {
1052                         apply_RI(pbqp);
1053                 } else if (node_bucket_get_length(node_buckets[2]) > 0) {
1054                         apply_RII(pbqp);
1055                 } else if (node_bucket_get_length(node_buckets[3]) > 0) {
1056                         apply_Brute_Force(pbqp);
1057                 } else {
1058                         return;
1059                 }
1060         }
1061 }
1062
1063 static unsigned get_minimal_alternative(pbqp *pbqp, pbqp_node *node)
1064 {
1065         vector      *node_vec;
1066         unsigned     node_index;
1067         unsigned     node_len;
1068         unsigned     min_index    = 0;
1069         num          min          = INF_COSTS;
1070         unsigned     bucket_index;
1071
1072         assert(pbqp);
1073         assert(node);
1074         node_vec     = node->costs;
1075         node_len     = node_vec->len;
1076         bucket_index = node->bucket_index;
1077
1078         for (node_index = 0; node_index < node_len; ++node_index) {
1079                 pbqp_node_bucket bucket_deg3;
1080                 num              value;
1081                 unsigned         bucket_0_length;
1082                 unsigned         bucket_red_length;
1083
1084                 char *tmp = obstack_finish(&pbqp->obstack);
1085
1086                 node_bucket_init(&bucket_deg3);
1087
1088                 /* Some node buckets and the edge bucket should be empty. */
1089                 assert(node_bucket_get_length(node_buckets[1]) == 0);
1090                 assert(node_bucket_get_length(node_buckets[2]) == 0);
1091                 assert(edge_bucket_get_length(edge_bucket)     == 0);
1092
1093                 /* char *tmp = obstack_finish(&pbqp->obstack); */
1094
1095                 /* Save current PBQP state. */
1096                 node_bucket_copy(&bucket_deg3, node_buckets[3]);
1097                 node_bucket_shrink(&node_buckets[3], 0);
1098                 node_bucket_deep_copy(pbqp, &node_buckets[3], bucket_deg3);
1099                 node_bucket_update(pbqp, node_buckets[3]);
1100                 bucket_0_length   = node_bucket_get_length(node_buckets[0]);
1101                 bucket_red_length = node_bucket_get_length(reduced_bucket);
1102
1103                 /* Select alternative and solve PBQP recursively. */
1104                 select_alternative(node_buckets[3][bucket_index], node_index);
1105                 apply_brute_force_reductions(pbqp);
1106
1107                 value = determine_solution(pbqp);
1108
1109                 if (value < min) {
1110                         min = value;
1111                         min_index = node_index;
1112                 }
1113
1114                 /* Some node buckets and the edge bucket should still be empty. */
1115                 assert(node_bucket_get_length(node_buckets[1]) == 0);
1116                 assert(node_bucket_get_length(node_buckets[2]) == 0);
1117                 assert(edge_bucket_get_length(edge_bucket)     == 0);
1118
1119                 /* Clear modified buckets... */
1120                 node_bucket_shrink(&node_buckets[3], 0);
1121
1122                 /* ... and restore old PBQP state. */
1123                 node_bucket_shrink(&node_buckets[0], bucket_0_length);
1124                 node_bucket_shrink(&reduced_bucket, bucket_red_length);
1125                 node_bucket_copy(&node_buckets[3], bucket_deg3);
1126                 node_bucket_update(pbqp, node_buckets[3]);
1127
1128                 /* Free copies. */
1129                 /* obstack_free(&pbqp->obstack, tmp); */
1130                 node_bucket_free(&bucket_deg3);
1131
1132                 obstack_free(&pbqp->obstack, tmp);
1133         }
1134
1135         return min_index;
1136 }
1137
1138 void apply_Brute_Force(pbqp *pbqp)
1139 {
1140         pbqp_node   *node         = NULL;
1141         unsigned     min_index    = 0;
1142
1143         assert(pbqp);
1144
1145         /* We want to reduce a node with maximum degree. */
1146         node = get_node_with_max_degree();
1147         assert(node);
1148         assert(pbqp_node_get_degree(node) > 2);
1149
1150 #if     KAPS_DUMP
1151         if (pbqp->dump_file) {
1152                 char     txt[100];
1153                 sprintf(txt, "BF-Reduction of Node n%d", node->index);
1154                 dump_section(pbqp->dump_file, 2, txt);
1155                 pbqp_dump_graph(pbqp);
1156         }
1157 #endif
1158
1159 #if KAPS_STATISTIC
1160         dump++;
1161 #endif
1162
1163         min_index = get_minimal_alternative(pbqp, node);
1164         node = pbqp->nodes[node->index];
1165
1166 #if     KAPS_DUMP
1167         if (pbqp->dump_file) {
1168                 fprintf(pbqp->dump_file, "node n%d is set to %d<br><br>\n",
1169                                         node->index, min_index);
1170         }
1171 #endif
1172
1173 #if KAPS_STATISTIC
1174         dump--;
1175         if (dump == 0) {
1176                 FILE *fh = fopen("solutions.pb", "a");
1177                 fprintf(fh, "[%u]", min_index);
1178                 fclose(fh);
1179                 pbqp->num_bf++;
1180         }
1181 #endif
1182
1183         /* Now that we found the minimum set all other costs to infinity. */
1184         select_alternative(node, min_index);
1185 }
1186
1187 void solve_pbqp_brute_force(pbqp *pbqp)
1188 {
1189         /* Reduce nodes degree ... */
1190         initial_simplify_edges(pbqp);
1191
1192         /* ... and put node into bucket representing their degree. */
1193         fill_node_buckets(pbqp);
1194
1195 #if KAPS_STATISTIC
1196         FILE *fh = fopen("solutions.pb", "a");
1197         fprintf(fh, "Solution");
1198         fclose(fh);
1199 #endif
1200
1201         apply_brute_force_reductions(pbqp);
1202
1203         pbqp->solution = determine_solution(pbqp);
1204
1205 #if KAPS_STATISTIC
1206         fh = fopen("solutions.pb", "a");
1207         fprintf(fh, ": %lld RE:%u R0:%u R1:%u R2:%u RN/BF:%u\n", pbqp->solution,
1208                         pbqp->num_edges, pbqp->num_r0, pbqp->num_r1, pbqp->num_r2,
1209                         pbqp->num_bf);
1210         fclose(fh);
1211 #endif
1212
1213         /* Solve reduced nodes. */
1214         back_propagate(pbqp);
1215
1216         free_buckets();
1217 }
1218
1219 void back_propagate_RI(pbqp *pbqp, pbqp_node *node)
1220 {
1221         pbqp_edge   *edge;
1222         pbqp_node   *other;
1223         pbqp_matrix *mat;
1224         vector      *vec;
1225         int          is_src;
1226
1227         assert(pbqp);
1228         assert(node);
1229
1230         edge = node->edges[0];
1231         mat = edge->costs;
1232         is_src = edge->src == node;
1233         vec = node->costs;
1234
1235         if (is_src) {
1236                 other = edge->tgt;
1237                 assert(other);
1238
1239                 /* Update pointer for brute force solver. */
1240                 other = pbqp->nodes[other->index];
1241
1242                 node->solution = pbqp_matrix_get_col_min_index(mat, other->solution, vec);
1243         } else {
1244                 other = edge->src;
1245                 assert(other);
1246
1247                 /* Update pointer for brute force solver. */
1248                 other = pbqp->nodes[other->index];
1249
1250                 node->solution = pbqp_matrix_get_row_min_index(mat, other->solution, vec);
1251         }
1252
1253 #if     KAPS_DUMP
1254         if (pbqp->dump_file) {
1255                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
1256         }
1257 #endif
1258 }
1259
1260 void back_propagate_RII(pbqp *pbqp, pbqp_node *node)
1261 {
1262         pbqp_edge   *src_edge   = node->edges[0];
1263         pbqp_edge   *tgt_edge   = node->edges[1];
1264         int          src_is_src = src_edge->src == node;
1265         int          tgt_is_src = tgt_edge->src == node;
1266         pbqp_matrix *src_mat;
1267         pbqp_matrix *tgt_mat;
1268         pbqp_node   *src_node;
1269         pbqp_node   *tgt_node;
1270         vector      *vec;
1271         vector      *node_vec;
1272         unsigned     col_index;
1273         unsigned     row_index;
1274
1275         assert(pbqp);
1276
1277         if (src_is_src) {
1278                 src_node = src_edge->tgt;
1279         } else {
1280                 src_node = src_edge->src;
1281         }
1282
1283         if (tgt_is_src) {
1284                 tgt_node = tgt_edge->tgt;
1285         } else {
1286                 tgt_node = tgt_edge->src;
1287         }
1288
1289         /* Swap nodes if necessary. */
1290         if (tgt_node->index < src_node->index) {
1291                 pbqp_node *tmp_node;
1292                 pbqp_edge *tmp_edge;
1293
1294                 tmp_node = src_node;
1295                 src_node = tgt_node;
1296                 tgt_node = tmp_node;
1297
1298                 tmp_edge = src_edge;
1299                 src_edge = tgt_edge;
1300                 tgt_edge = tmp_edge;
1301
1302                 src_is_src = src_edge->src == node;
1303                 tgt_is_src = tgt_edge->src == node;
1304         }
1305
1306         /* Update pointer for brute force solver. */
1307         src_node = pbqp->nodes[src_node->index];
1308         tgt_node = pbqp->nodes[tgt_node->index];
1309
1310         src_mat = src_edge->costs;
1311         tgt_mat = tgt_edge->costs;
1312
1313         node_vec = node->costs;
1314
1315         row_index = src_node->solution;
1316         col_index = tgt_node->solution;
1317
1318         vec = vector_copy(pbqp, node_vec);
1319
1320         if (src_is_src) {
1321                 vector_add_matrix_col(vec, src_mat, row_index);
1322         } else {
1323                 vector_add_matrix_row(vec, src_mat, row_index);
1324         }
1325
1326         if (tgt_is_src) {
1327                 vector_add_matrix_col(vec, tgt_mat, col_index);
1328         } else {
1329                 vector_add_matrix_row(vec, tgt_mat, col_index);
1330         }
1331
1332         node->solution = vector_get_min_index(vec);
1333
1334 #if     KAPS_DUMP
1335         if (pbqp->dump_file) {
1336                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
1337         }
1338 #endif
1339
1340         obstack_free(&pbqp->obstack, vec);
1341 }
1342
1343 int node_is_reduced(pbqp_node *node)
1344 {
1345         if (!reduced_bucket) return 0;
1346
1347         if (pbqp_node_get_degree(node) == 0) return 1;
1348
1349         return node_bucket_contains(reduced_bucket, node);
1350 }