- completed integration of new PBQP solver (works fine if we need only RI reductions)
[libfirm] / heuristical.c
1 #include "adt/array.h"
2 #include "assert.h"
3 #include "error.h"
4
5 #include "heuristical.h"
6 #include "html_dumper.h"
7 #include "kaps.h"
8 #include "matrix.h"
9 #include "pbqp_edge.h"
10 #include "pbqp_edge_t.h"
11 #include "pbqp_node.h"
12 #include "pbqp_node_t.h"
13 #include "vector.h"
14
15 static pbqp_edge **edge_bucket;
16 static pbqp_node **node_buckets[4];
17 static pbqp_node **reduced_bucket;
18
19 static void init_buckets(void)
20 {
21         int i;
22
23         edge_bucket = NEW_ARR_F(pbqp_edge *, 0);
24         reduced_bucket = NEW_ARR_F(pbqp_node *, 0);
25
26         for (i = 0; i < 4; ++i) {
27                 node_buckets[i] = NEW_ARR_F(pbqp_node *, 0);
28         }
29 }
30
31 static void fill_node_buckets(pbqp *pbqp)
32 {
33         unsigned node_index;
34         unsigned node_len;
35
36         assert(pbqp);
37         node_len = pbqp->num_nodes;
38
39         for (node_index = 0; node_index < node_len; ++node_index) {
40                 unsigned   arity;
41                 pbqp_node *node = get_node(pbqp, node_index);
42
43                 if (!node) continue;
44
45                 arity = ARR_LEN(node->edges);
46
47                 /* We have only one bucket for nodes with arity >= 3. */
48                 if (arity > 3) {
49                         arity = 3;
50                 }
51
52                 node->bucket_index = ARR_LEN(node_buckets[arity]);
53
54                 ARR_APP1(pbqp_node *, node_buckets[arity], node);
55         }
56 }
57
58 static void normalize_towards_source(pbqp *pbqp, pbqp_edge *edge)
59 {
60         pbqp_matrix    *mat;
61         pbqp_node      *src_node;
62         pbqp_node      *tgt_node;
63         vector         *src_vec;
64         vector         *tgt_vec;
65         int             src_len;
66         int             tgt_len;
67         int             src_index;
68
69         assert(pbqp);
70         assert(edge);
71
72         src_node = edge->src;
73         tgt_node = edge->tgt;
74         assert(src_node);
75         assert(tgt_node);
76
77         src_vec = src_node->costs;
78         tgt_vec = tgt_node->costs;
79         assert(src_vec);
80         assert(tgt_vec);
81
82         src_len = src_vec->len;
83         tgt_len = tgt_vec->len;
84         assert(src_len > 0);
85         assert(tgt_len > 0);
86
87         mat = edge->costs;
88         assert(mat);
89
90         /* Normalize towards source node. */
91         for (src_index = 0; src_index < src_len; ++src_index) {
92                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
93
94                 if (min != 0) {
95                         pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
96                         src_vec->entries[src_index].data += min;
97
98                         // TODO add to edge_list if inf
99                 }
100         }
101 }
102
103 static void normalize_towards_target(pbqp *pbqp, pbqp_edge *edge)
104 {
105         pbqp_matrix    *mat;
106         pbqp_node      *src_node;
107         pbqp_node      *tgt_node;
108         vector         *src_vec;
109         vector         *tgt_vec;
110         int             src_len;
111         int             tgt_len;
112         int             tgt_index;
113
114         assert(pbqp);
115         assert(edge);
116
117         src_node = edge->src;
118         tgt_node = edge->tgt;
119         assert(src_node);
120         assert(tgt_node);
121
122         src_vec = src_node->costs;
123         tgt_vec = tgt_node->costs;
124         assert(src_vec);
125         assert(tgt_vec);
126
127         src_len = src_vec->len;
128         tgt_len = tgt_vec->len;
129         assert(src_len > 0);
130         assert(tgt_len > 0);
131
132         mat = edge->costs;
133         assert(mat);
134
135         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
136                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
137
138                 if (min != 0) {
139                         pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
140                         tgt_vec->entries[tgt_index].data += min;
141
142                         // TODO add to edge_list if inf
143                 }
144         }
145 }
146
147 static void simplify_edge(pbqp *pbqp, pbqp_edge *edge)
148 {
149         pbqp_matrix    *mat;
150         pbqp_node      *src_node;
151         pbqp_node      *tgt_node;
152         vector         *src_vec;
153         vector         *tgt_vec;
154         int             src_len;
155         int             tgt_len;
156
157         assert(pbqp);
158         assert(edge);
159
160         src_node = edge->src;
161         tgt_node = edge->tgt;
162         assert(src_node);
163         assert(tgt_node);
164
165         if(pbqp->dump_file) {
166                 char txt[100];
167                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
168                 dump_section(pbqp->dump_file, 3, txt);
169         }
170
171         src_vec = src_node->costs;
172         tgt_vec = tgt_node->costs;
173         assert(src_vec);
174         assert(tgt_vec);
175
176         src_len = src_vec->len;
177         tgt_len = tgt_vec->len;
178         assert(src_len > 0);
179         assert(tgt_len > 0);
180
181         mat = edge->costs;
182         assert(mat);
183
184         if (pbqp->dump_file) {
185                 fputs("Input:<br>\n", pbqp->dump_file);
186                 dump_simplifyedge(pbqp, edge);
187         }
188
189         normalize_towards_source(pbqp, edge);
190         normalize_towards_target(pbqp, edge);
191
192         if (pbqp->dump_file) {
193                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
194                 dump_simplifyedge(pbqp, edge);
195         }
196
197         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
198                 if (pbqp->dump_file) {
199                         fputs("edge has been eliminated", pbqp->dump_file);
200
201                         delete_edge(edge);
202                 }
203         }
204 }
205
206 static void reorder_node(pbqp_node *node)
207 {
208         unsigned arity;
209         unsigned old_arity;
210         unsigned old_bucket_len;
211
212         assert(node);
213
214         arity = ARR_LEN(node->edges);
215
216         /* Equal bucket as before */
217         if (arity > 2) return;
218
219         /* Assume node lost one incident edge. */
220         old_arity = arity + 1;
221
222         if (ARR_LEN(node_buckets[old_arity]) <= (int)node->bucket_index
223                         || node_buckets[old_arity][node->bucket_index] != node) {
224                 /* Old arity is new arity, so we have nothing to do. */
225                 return;
226         }
227
228         old_bucket_len = ARR_LEN(node_buckets[old_arity]);
229         assert (node_buckets[old_arity][node->bucket_index] == node);
230
231         /* Delete node from old bucket... */
232         node_buckets[old_arity][node->bucket_index]
233                         = node_buckets[old_arity][old_bucket_len - 1];
234         ARR_SHRINKLEN(node_buckets[old_arity], (int)old_bucket_len - 1);
235
236         /* ..and add to new one. */
237         node->bucket_index = ARR_LEN(node_buckets[arity]);
238         ARR_APP1(pbqp_node *, node_buckets[arity], node);
239 }
240
241 void solve_pbqp_heuristical(pbqp *pbqp)
242 {
243         unsigned node_index;
244         unsigned node_len;
245
246         assert(pbqp);
247
248         if (pbqp->dump_file) {
249                 pbqp_dump_input(pbqp);
250                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
251         }
252
253         node_len = pbqp->num_nodes;
254
255         init_buckets();
256
257         /* First simplify all edges. */
258         for (node_index = 0; node_index < node_len; ++node_index) {
259                 unsigned    edge_index;
260                 pbqp_node  *node = get_node(pbqp, node_index);
261                 pbqp_edge **edges;
262                 unsigned    edge_len;
263
264                 if (!node) continue;
265
266                 edges = node->edges;
267                 edge_len = ARR_LEN(edges);
268
269                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
270                         pbqp_edge *edge = edges[edge_index];
271
272                         /* Simplify only once per edge. */
273                         if (node_index != edge->src->index) continue;
274
275                         simplify_edge(pbqp, edge);
276                 }
277         }
278
279         /* Put node into bucket representing their arity. */
280         fill_node_buckets(pbqp);
281
282         for (;;) {
283                 if (ARR_LEN(edge_bucket) > 0) {
284                         panic("Please implement edge simplification");
285                 } else if (ARR_LEN(node_buckets[1]) > 0) {
286                         applyRI(pbqp);
287                 } else if (ARR_LEN(node_buckets[2]) > 0) {
288                         panic("Please implement RII simplification");
289                 } else if (ARR_LEN(node_buckets[3]) > 0) {
290                         panic("Please implement RN simplification");
291                 } else {
292                         break;
293                 }
294         }
295
296         if (pbqp->dump_file) {
297                 dump_section(pbqp->dump_file, 1, "4. Determine Solution/Minimum");
298                 dump_section(pbqp->dump_file, 2, "4.1. Trivial Solution");
299         }
300
301         /* Solve trivial nodes and calculate solution. */
302         node_len = ARR_LEN(node_buckets[0]);
303         for (node_index = 0; node_index < node_len; ++node_index) {
304                 pbqp_node *node = node_buckets[0][node_index];
305                 assert(node);
306
307                 node->solution = vector_get_min_index(node->costs);
308                 pbqp->solution += node->costs->entries[node->solution].data;
309                 if (pbqp->dump_file) {
310                         fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
311                         dump_node(pbqp, node);
312                 }
313         }
314
315         if (pbqp->dump_file) {
316                 dump_section(pbqp->dump_file, 2, "Minimum");
317                 fprintf(pbqp->dump_file, "Minimum is equal to %d.", pbqp->solution);
318                 dump_section(pbqp->dump_file, 2, "Back Propagation");
319         }
320
321         /* Solve reduced nodes. */
322         node_len = ARR_LEN(reduced_bucket);
323         for (node_index = node_len; node_index > 0; --node_index) {
324                 pbqp_node *node = reduced_bucket[node_index - 1];
325                 assert(node);
326
327                 switch (ARR_LEN(node->edges)) {
328                         case 1:
329                                 back_propagate_RI(pbqp, node);
330                                 break;
331                         case 2:
332                                 panic("Please implement back propagation for RII");
333                                 break;
334                         default:
335                                 panic("Only nodes with degree one or two should be in this bucket");
336                                 break;
337                 }
338         }
339 }
340
341 void applyRI(pbqp *pbqp)
342 {
343         pbqp_node  **bucket     = node_buckets[1];
344         unsigned     bucket_len = ARR_LEN(bucket);
345         pbqp_node   *node       = bucket[bucket_len - 1];
346         pbqp_edge   *edge       = node->edges[0];
347         pbqp_matrix *mat        = edge->costs;
348         int          is_src     = edge->src == node;
349         pbqp_node   *other_node;
350
351         if (is_src) {
352                 other_node = edge->tgt;
353         } else {
354                 other_node = edge->src;
355         }
356
357         if (pbqp->dump_file) {
358                 char     txt[100];
359                 sprintf(txt, "RI-Reduktion of Node n%d", node->index);
360                 dump_section(pbqp->dump_file, 2, txt);
361                 pbqp_dump_graph(pbqp);
362                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
363                 dump_node(pbqp, node);
364                 dump_node(pbqp, other_node);
365                 dump_edge(pbqp, edge);
366         }
367
368         if (is_src) {
369                 pbqp_matrix_add_to_all_cols(mat, node->costs);
370                 normalize_towards_target(pbqp, edge);
371         } else {
372                 pbqp_matrix_add_to_all_rows(mat, node->costs);
373                 normalize_towards_source(pbqp, edge);
374         }
375         disconnect_edge(other_node, edge);
376
377         if (pbqp->dump_file) {
378                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
379                 dump_node(pbqp, other_node);
380         }
381
382         /* Remove node from bucket... */
383         ARR_SHRINKLEN(bucket, (int)bucket_len - 1);
384         reorder_node(other_node);
385
386         /* ...and add it to back propagation list. */
387         ARR_APP1(pbqp_node *, reduced_bucket, node);
388 }
389
390 void back_propagate_RI(pbqp *pbqp, pbqp_node *node)
391 {
392         pbqp_edge   *edge;
393         pbqp_node   *other;
394         pbqp_matrix *mat;
395         vector      *vec;
396         int          is_src;
397
398         assert(pbqp);
399         assert(node);
400
401         edge = node->edges[0];
402         mat = edge->costs;
403         is_src = edge->src == node;
404         vec = node->costs;
405
406         if (is_src) {
407                 other = edge->tgt;
408                 assert(other);
409                 vector_add_matrix_col(vec, mat, other->solution);
410         } else {
411                 other = edge->src;
412                 assert(other);
413                 vector_add_matrix_row(vec, mat, other->solution);
414         }
415
416         node->solution = vector_get_min_index(vec);
417         if (pbqp->dump_file) {
418                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
419         }
420 }