c30463cc7690e3654355d9ef37cd362efabd01f0
[cparser] / ast2firm.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <string.h>
24 #include <stdbool.h>
25 #include <limits.h>
26
27 #include <libfirm/firm.h>
28 #include <libfirm/adt/obst.h>
29 #include <libfirm/be.h>
30
31 #include "ast2firm.h"
32
33 #include "adt/error.h"
34 #include "adt/array.h"
35 #include "symbol_t.h"
36 #include "token_t.h"
37 #include "type_t.h"
38 #include "ast_t.h"
39 #include "entity_t.h"
40 #include "parser.h"
41 #include "diagnostic.h"
42 #include "lang_features.h"
43 #include "types.h"
44 #include "type_hash.h"
45 #include "mangle.h"
46 #include "walk_statements.h"
47 #include "warning.h"
48 #include "entitymap_t.h"
49 #include "driver/firm_opt.h"
50 #include "driver/firm_cmdline.h"
51
52 static ir_type *ir_type_const_char;
53 static ir_type *ir_type_wchar_t;
54 static ir_type *ir_type_void;
55 static ir_type *ir_type_int;
56
57 static int        next_value_number_function;
58 static ir_node   *continue_label;
59 static ir_node   *break_label;
60 static ir_node   *current_switch_cond;
61 static bool       saw_default_label;
62 static label_t  **all_labels;
63 static entity_t **inner_functions;
64 static ir_node   *ijmp_list;
65 static bool       constant_folding;
66
67 extern bool       have_const_functions;
68
69 static const entity_t     *current_function_entity;
70 static ir_node            *current_function_name;
71 static ir_node            *current_funcsig;
72 static switch_statement_t *current_switch;
73 static ir_graph           *current_function;
74 static translation_unit_t *current_translation_unit;
75
76 static entitymap_t  entitymap;
77
78 static struct obstack asm_obst;
79
80 typedef enum declaration_kind_t {
81         DECLARATION_KIND_UNKNOWN,
82         DECLARATION_KIND_VARIABLE_LENGTH_ARRAY,
83         DECLARATION_KIND_GLOBAL_VARIABLE,
84         DECLARATION_KIND_LOCAL_VARIABLE,
85         DECLARATION_KIND_LOCAL_VARIABLE_ENTITY,
86         DECLARATION_KIND_PARAMETER,
87         DECLARATION_KIND_PARAMETER_ENTITY,
88         DECLARATION_KIND_FUNCTION,
89         DECLARATION_KIND_COMPOUND_MEMBER,
90         DECLARATION_KIND_INNER_FUNCTION
91 } declaration_kind_t;
92
93 static ir_mode *get_ir_mode(type_t *type);
94 static ir_type *get_ir_type_incomplete(type_t *type);
95
96 static void enqueue_inner_function(entity_t *entity)
97 {
98         ARR_APP1(entity_t*, inner_functions, entity);
99 }
100
101 static entity_t *next_inner_function(void)
102 {
103         int len = ARR_LEN(inner_functions);
104         if (len == 0)
105                 return NULL;
106
107         entity_t *entity = inner_functions[len-1];
108         ARR_SHRINKLEN(inner_functions, len-1);
109
110         return entity;
111 }
112
113 ir_node *uninitialized_local_var(ir_graph *irg, ir_mode *mode, int pos)
114 {
115         const entity_t *entity = get_irg_loc_description(irg, pos);
116
117         if (entity != NULL) {
118                 warningf(&entity->base.source_position,
119                          "%s '%#T' might be used uninitialized",
120                          get_entity_kind_name(entity->kind),
121                          entity->declaration.type, entity->base.symbol);
122         }
123         return new_r_Unknown(irg, mode);
124 }
125
126 unsigned dbg_snprint(char *buf, unsigned len, const dbg_info *dbg)
127 {
128         const source_position_t *pos = (const source_position_t*) dbg;
129         if (pos == NULL)
130                 return 0;
131         return (unsigned) snprintf(buf, len, "%s:%u", pos->input_name,
132                                    pos->linenr);
133 }
134
135 const char *dbg_retrieve(const dbg_info *dbg, unsigned *line)
136 {
137         const source_position_t *pos = (const source_position_t*) dbg;
138         if (pos == NULL)
139                 return NULL;
140         if (line != NULL)
141                 *line = pos->linenr;
142         return pos->input_name;
143 }
144
145 static dbg_info *get_dbg_info(const source_position_t *pos)
146 {
147         return (dbg_info*) pos;
148 }
149
150 static ir_mode *atomic_modes[ATOMIC_TYPE_LAST+1];
151
152 static ir_mode *mode_int, *mode_uint;
153
154 static ir_node *_expression_to_firm(const expression_t *expression);
155 static ir_node *expression_to_firm(const expression_t *expression);
156 static void create_local_declaration(entity_t *entity);
157
158 static ir_mode *init_atomic_ir_mode(atomic_type_kind_t kind)
159 {
160         unsigned flags = get_atomic_type_flags(kind);
161         unsigned size  = get_atomic_type_size(kind);
162         if ( (flags & (ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_FLOAT))
163                         && !(flags & ATOMIC_TYPE_FLAG_COMPLEX)) {
164                 char            name[64];
165                 ir_mode_sort    sort;
166                 unsigned        bit_size     = size * 8;
167                 bool            is_signed    = (flags & ATOMIC_TYPE_FLAG_SIGNED) != 0;
168                 unsigned        modulo_shift;
169                 ir_mode_arithmetic arithmetic;
170
171                 if (flags & ATOMIC_TYPE_FLAG_INTEGER) {
172                         assert(! (flags & ATOMIC_TYPE_FLAG_FLOAT));
173                         snprintf(name, sizeof(name), "%s%u", is_signed ? "I" : "U",
174                                  bit_size);
175                         sort         = irms_int_number;
176                         arithmetic   = irma_twos_complement;
177                         modulo_shift = bit_size < machine_size ? machine_size : bit_size;
178                 } else {
179                         assert(flags & ATOMIC_TYPE_FLAG_FLOAT);
180                         snprintf(name, sizeof(name), "F%u", bit_size);
181                         sort         = irms_float_number;
182                         arithmetic   = irma_ieee754;
183                         modulo_shift = 0;
184                 }
185                 return new_ir_mode(name, sort, bit_size, is_signed, arithmetic,
186                                    modulo_shift);
187         }
188
189         return NULL;
190 }
191
192 /**
193  * Initialises the atomic modes depending on the machine size.
194  */
195 static void init_atomic_modes(void)
196 {
197         for (int i = 0; i <= ATOMIC_TYPE_LAST; ++i) {
198                 atomic_modes[i] = init_atomic_ir_mode((atomic_type_kind_t) i);
199         }
200         mode_int  = atomic_modes[ATOMIC_TYPE_INT];
201         mode_uint = atomic_modes[ATOMIC_TYPE_UINT];
202
203         /* there's no real void type in firm */
204         atomic_modes[ATOMIC_TYPE_VOID] = atomic_modes[ATOMIC_TYPE_CHAR];
205
206         /* initialize pointer modes */
207         char            name[64];
208         ir_mode_sort    sort         = irms_reference;
209         unsigned        bit_size     = machine_size;
210         bool            is_signed    = 0;
211         ir_mode_arithmetic arithmetic   = irma_twos_complement;
212         unsigned        modulo_shift
213                 = bit_size < machine_size ? machine_size : bit_size;
214
215         snprintf(name, sizeof(name), "p%u", machine_size);
216         ir_mode *ptr_mode = new_ir_mode(name, sort, bit_size, is_signed, arithmetic,
217                                         modulo_shift);
218
219         set_reference_mode_signed_eq(ptr_mode, atomic_modes[get_intptr_kind()]);
220         set_reference_mode_unsigned_eq(ptr_mode, atomic_modes[get_uintptr_kind()]);
221
222         /* Hmm, pointers should be machine size */
223         set_modeP_data(ptr_mode);
224         set_modeP_code(ptr_mode);
225 }
226
227 ir_mode *get_atomic_mode(atomic_type_kind_t kind)
228 {
229         assert(kind <= ATOMIC_TYPE_LAST);
230         return atomic_modes[kind];
231 }
232
233 static unsigned get_compound_type_size(compound_type_t *type)
234 {
235         ir_type *irtype = get_ir_type((type_t*) type);
236         return get_type_size_bytes(irtype);
237 }
238
239 static unsigned get_array_type_size(array_type_t *type)
240 {
241         assert(!type->is_vla);
242         ir_type *irtype = get_ir_type((type_t*) type);
243         return get_type_size_bytes(irtype);
244 }
245
246 static unsigned get_type_size_const(type_t *type)
247 {
248         switch(type->kind) {
249         case TYPE_ERROR:
250                 panic("error type occurred");
251         case TYPE_ATOMIC:
252                 return get_atomic_type_size(type->atomic.akind);
253         case TYPE_COMPLEX:
254                 return 2 * get_atomic_type_size(type->complex.akind);
255         case TYPE_IMAGINARY:
256                 return get_atomic_type_size(type->imaginary.akind);
257         case TYPE_ENUM:
258                 return get_mode_size_bytes(mode_int);
259         case TYPE_COMPOUND_UNION:
260         case TYPE_COMPOUND_STRUCT:
261                 return get_compound_type_size(&type->compound);
262         case TYPE_FUNCTION:
263                 /* just a pointer to the function */
264                 return get_mode_size_bytes(mode_P_code);
265         case TYPE_POINTER:
266         case TYPE_REFERENCE:
267                 return get_mode_size_bytes(mode_P_data);
268         case TYPE_ARRAY:
269                 return get_array_type_size(&type->array);
270         case TYPE_BUILTIN:
271                 return get_type_size_const(type->builtin.real_type);
272         case TYPE_BITFIELD:
273                 panic("type size of bitfield request");
274         case TYPE_TYPEDEF:
275         case TYPE_TYPEOF:
276         case TYPE_INVALID:
277                 break;
278         }
279         panic("Trying to determine size of invalid type");
280 }
281
282 static ir_node *get_vla_size(array_type_t *const type)
283 {
284         ir_node *size_node = type->size_node;
285         if (size_node == NULL) {
286                 size_node = expression_to_firm(type->size_expression);
287                 type->size_node = size_node;
288         }
289         return size_node;
290 }
291
292 static ir_node *get_type_size(type_t *type)
293 {
294         type = skip_typeref(type);
295
296         if (is_type_array(type) && type->array.is_vla) {
297                 ir_node *size_node = get_vla_size(&type->array);
298                 ir_node *elem_size = get_type_size(type->array.element_type);
299                 ir_mode *mode      = get_irn_mode(size_node);
300                 ir_node *real_size = new_d_Mul(NULL, size_node, elem_size, mode);
301                 return real_size;
302         }
303
304         ir_mode *mode = get_ir_mode(type_size_t);
305         symconst_symbol sym;
306         sym.type_p = get_ir_type(type);
307         return new_SymConst(mode, sym, symconst_type_size);
308 }
309
310 static unsigned count_parameters(const function_type_t *function_type)
311 {
312         unsigned count = 0;
313
314         function_parameter_t *parameter = function_type->parameters;
315         for ( ; parameter != NULL; parameter = parameter->next) {
316                 ++count;
317         }
318
319         return count;
320 }
321
322 /**
323  * Creates a Firm type for an atomic type
324  */
325 static ir_type *create_atomic_type(const atomic_type_t *type)
326 {
327         atomic_type_kind_t  kind   = type->akind;
328         ir_mode            *mode   = atomic_modes[kind];
329         ident              *id     = get_mode_ident(mode);
330         ir_type            *irtype = new_type_primitive(id, mode);
331
332         set_type_alignment_bytes(irtype, type->base.alignment);
333
334         return irtype;
335 }
336
337 /**
338  * Creates a Firm type for a complex type
339  */
340 static ir_type *create_complex_type(const complex_type_t *type)
341 {
342         atomic_type_kind_t  kind = type->akind;
343         ir_mode            *mode = atomic_modes[kind];
344         ident              *id   = get_mode_ident(mode);
345
346         (void) id;
347
348         /* FIXME: finish the array */
349         return NULL;
350 }
351
352 /**
353  * Creates a Firm type for an imaginary type
354  */
355 static ir_type *create_imaginary_type(const imaginary_type_t *type)
356 {
357         atomic_type_kind_t  kind      = type->akind;
358         ir_mode            *mode      = atomic_modes[kind];
359         ident              *id        = get_mode_ident(mode);
360         ir_type            *irtype    = new_type_primitive(id, mode);
361
362         set_type_alignment_bytes(irtype, type->base.alignment);
363
364         return irtype;
365 }
366
367 /**
368  * return type of a parameter (and take transparent union gnu extension into
369  * account)
370  */
371 static type_t *get_parameter_type(type_t *type)
372 {
373         type = skip_typeref(type);
374         if (type->base.modifiers & TYPE_MODIFIER_TRANSPARENT_UNION) {
375                 compound_t *compound = type->compound.compound;
376                 type                 = compound->members.entities->declaration.type;
377         }
378
379         return type;
380 }
381
382 static ir_type *create_method_type(const function_type_t *function_type)
383 {
384         type_t  *return_type  = skip_typeref(function_type->return_type);
385
386         ident   *id           = id_unique("functiontype.%u");
387         int      n_parameters = count_parameters(function_type);
388         int      n_results    = return_type == type_void ? 0 : 1;
389         ir_type *irtype       = new_type_method(id, n_parameters, n_results);
390
391         if (return_type != type_void) {
392                 ir_type *restype = get_ir_type(return_type);
393                 set_method_res_type(irtype, 0, restype);
394         }
395
396         function_parameter_t *parameter = function_type->parameters;
397         int                   n         = 0;
398         for ( ; parameter != NULL; parameter = parameter->next) {
399                 type_t  *type     = get_parameter_type(parameter->type);
400                 ir_type *p_irtype = get_ir_type(type);
401                 set_method_param_type(irtype, n, p_irtype);
402                 ++n;
403         }
404
405         if (function_type->variadic || function_type->unspecified_parameters) {
406                 set_method_variadicity(irtype, variadicity_variadic);
407         }
408
409         unsigned cc = get_method_calling_convention(irtype);
410         switch (function_type->calling_convention) {
411         case CC_DEFAULT: /* unspecified calling convention, equal to one of the other, typically cdecl */
412         case CC_CDECL:
413 is_cdecl:
414                 set_method_calling_convention(irtype, SET_CDECL(cc));
415                 break;
416
417         case CC_STDCALL:
418                 if (function_type->variadic || function_type->unspecified_parameters)
419                         goto is_cdecl;
420
421                 /* only non-variadic function can use stdcall, else use cdecl */
422                 set_method_calling_convention(irtype, SET_STDCALL(cc));
423                 break;
424
425         case CC_FASTCALL:
426                 if (function_type->variadic || function_type->unspecified_parameters)
427                         goto is_cdecl;
428                 /* only non-variadic function can use fastcall, else use cdecl */
429                 set_method_calling_convention(irtype, SET_FASTCALL(cc));
430                 break;
431
432         case CC_THISCALL:
433                 /* Hmm, leave default, not accepted by the parser yet. */
434                 break;
435         }
436
437         return irtype;
438 }
439
440 static ir_type *create_pointer_type(pointer_type_t *type)
441 {
442         type_t   *points_to    = type->points_to;
443         ir_type  *ir_points_to = get_ir_type_incomplete(points_to);
444         ir_type  *ir_type      = new_type_pointer(id_unique("pointer.%u"),
445                                                   ir_points_to, mode_P_data);
446
447         return ir_type;
448 }
449
450 static ir_type *create_reference_type(reference_type_t *type)
451 {
452         type_t  *refers_to    = type->refers_to;
453         ir_type *ir_refers_to = get_ir_type_incomplete(refers_to);
454         ir_type *ir_type      = new_type_pointer(id_unique("reference.%u"),
455                                                  ir_refers_to, mode_P_data);
456
457         return ir_type;
458 }
459
460 static ir_type *create_array_type(array_type_t *type)
461 {
462         type_t  *element_type    = type->element_type;
463         ir_type *ir_element_type = get_ir_type(element_type);
464
465         ident    *id      = id_unique("array.%u");
466         ir_type  *ir_type = new_type_array(id, 1, ir_element_type);
467
468         const int align = get_type_alignment_bytes(ir_element_type);
469         set_type_alignment_bytes(ir_type, align);
470
471         if (type->size_constant) {
472                 int n_elements = type->size;
473
474                 set_array_bounds_int(ir_type, 0, 0, n_elements);
475
476                 size_t elemsize = get_type_size_bytes(ir_element_type);
477                 if (elemsize % align > 0) {
478                         elemsize += align - (elemsize % align);
479                 }
480                 set_type_size_bytes(ir_type, n_elements * elemsize);
481         } else {
482                 set_array_lower_bound_int(ir_type, 0, 0);
483         }
484         set_type_state(ir_type, layout_fixed);
485
486         return ir_type;
487 }
488
489 /**
490  * Return the signed integer type of size bits.
491  *
492  * @param size   the size
493  */
494 static ir_type *get_signed_int_type_for_bit_size(ir_type *base_tp,
495                                                  unsigned size)
496 {
497         static ir_mode *s_modes[64 + 1] = {NULL, };
498         ir_type *res;
499         ir_mode *mode;
500
501         if (size <= 0 || size > 64)
502                 return NULL;
503
504         mode = s_modes[size];
505         if (mode == NULL) {
506                 char name[32];
507
508                 snprintf(name, sizeof(name), "bf_I%u", size);
509                 mode = new_ir_mode(name, irms_int_number, size, 1, irma_twos_complement,
510                                    size <= 32 ? 32 : size );
511                 s_modes[size] = mode;
512         }
513
514         char name[32];
515         snprintf(name, sizeof(name), "I%u", size);
516         ident *id = new_id_from_str(name);
517         dbg_info *dbgi = get_dbg_info(&builtin_source_position);
518         res = new_d_type_primitive(id_mangle_u(get_type_ident(base_tp), id), mode, dbgi);
519         set_primitive_base_type(res, base_tp);
520
521         return res;
522 }
523
524 /**
525  * Return the unsigned integer type of size bits.
526  *
527  * @param size   the size
528  */
529 static ir_type *get_unsigned_int_type_for_bit_size(ir_type *base_tp,
530                                                    unsigned size)
531 {
532         static ir_mode *u_modes[64 + 1] = {NULL, };
533         ir_type *res;
534         ir_mode *mode;
535
536         if (size <= 0 || size > 64)
537                 return NULL;
538
539         mode = u_modes[size];
540         if (mode == NULL) {
541                 char name[32];
542
543                 snprintf(name, sizeof(name), "bf_U%u", size);
544                 mode = new_ir_mode(name, irms_int_number, size, 0, irma_twos_complement,
545                                    size <= 32 ? 32 : size );
546                 u_modes[size] = mode;
547         }
548
549         char name[32];
550
551         snprintf(name, sizeof(name), "U%u", size);
552         ident *id = new_id_from_str(name);
553         dbg_info *dbgi = get_dbg_info(&builtin_source_position);
554         res = new_d_type_primitive(id_mangle_u(get_type_ident(base_tp), id), mode, dbgi);
555         set_primitive_base_type(res, base_tp);
556
557         return res;
558 }
559
560 static ir_type *create_bitfield_type(bitfield_type_t *const type)
561 {
562         type_t *base = skip_typeref(type->base_type);
563         assert(base->kind == TYPE_ATOMIC || base->kind == TYPE_ENUM);
564         ir_type *irbase = get_ir_type(base);
565
566         unsigned size = type->bit_size;
567
568         assert(!is_type_float(base));
569         if (is_type_signed(base)) {
570                 return get_signed_int_type_for_bit_size(irbase, size);
571         } else {
572                 return get_unsigned_int_type_for_bit_size(irbase, size);
573         }
574 }
575
576 #define INVALID_TYPE ((ir_type_ptr)-1)
577
578 enum {
579         COMPOUND_IS_STRUCT = false,
580         COMPOUND_IS_UNION  = true
581 };
582
583 /**
584  * Construct firm type from ast struct type.
585  *
586  * As anonymous inner structs get flattened to a single firm type, we might get
587  * irtype, outer_offset and out_align passed (they represent the position of
588  * the anonymous inner struct inside the resulting firm struct)
589  */
590 static ir_type *create_compound_type(compound_type_t *type, ir_type *irtype,
591                                      size_t *outer_offset, size_t *outer_align,
592                                      bool incomplete, bool is_union)
593 {
594         compound_t *compound = type->compound;
595
596         if (compound->irtype != NULL && (compound->irtype_complete || incomplete)) {
597                 return compound->irtype;
598         }
599
600         size_t align_all  = 1;
601         size_t offset     = 0;
602         size_t bit_offset = 0;
603         size_t size       = 0;
604
605         if (irtype == NULL) {
606                 symbol_t *symbol = compound->base.symbol;
607                 ident    *id;
608                 if (symbol != NULL) {
609                         id = new_id_from_str(symbol->string);
610                 } else {
611                         if (is_union) {
612                                 id = id_unique("__anonymous_union.%u");
613                         } else {
614                                 id = id_unique("__anonymous_struct.%u");
615                         }
616                 }
617                 dbg_info *dbgi = get_dbg_info(&compound->base.source_position);
618
619                 if (is_union) {
620                         irtype = new_d_type_union(id, dbgi);
621                 } else {
622                         irtype = new_d_type_struct(id, dbgi);
623                 }
624
625                 compound->irtype_complete = false;
626                 compound->irtype          = irtype;
627         } else {
628                 offset    = *outer_offset;
629                 align_all = *outer_align;
630         }
631
632         if (incomplete)
633                 return irtype;
634
635         compound->irtype_complete = true;
636
637         entity_t *entry = compound->members.entities;
638         for ( ; entry != NULL; entry = entry->base.next) {
639                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
640                         continue;
641
642                 size_t prev_offset = offset;
643
644                 symbol_t *symbol     = entry->base.symbol;
645                 type_t   *entry_type = skip_typeref(entry->declaration.type);
646                 dbg_info *dbgi       = get_dbg_info(&entry->base.source_position);
647
648                 ident    *ident;
649                 if (symbol != NULL) {
650                         ident = new_id_from_str(symbol->string);
651                 } else {
652                         if (entry_type->kind == TYPE_COMPOUND_STRUCT) {
653                                 create_compound_type(&entry_type->compound, irtype, &offset,
654                                                      &align_all, false, COMPOUND_IS_STRUCT);
655                                 goto finished_member;
656                         } else if (entry_type->kind == TYPE_COMPOUND_UNION) {
657                                 create_compound_type(&entry_type->compound, irtype, &offset,
658                                                      &align_all, false, COMPOUND_IS_UNION);
659                                 goto finished_member;
660                         } else {
661                                 assert(entry_type->kind == TYPE_BITFIELD);
662                         }
663                         ident = id_unique("anon.%u");
664                 }
665
666                 ir_type *base_irtype;
667                 if (entry_type->kind == TYPE_BITFIELD) {
668                         base_irtype = get_ir_type(entry_type->bitfield.base_type);
669                 } else {
670                         base_irtype = get_ir_type(entry_type);
671                 }
672
673                 size_t entry_alignment = get_type_alignment_bytes(base_irtype);
674                 size_t misalign        = offset % entry_alignment;
675
676                 ir_type   *entry_irtype = get_ir_type(entry_type);
677                 ir_entity *entity = new_d_entity(irtype, ident, entry_irtype, dbgi);
678
679                 size_t base;
680                 size_t bits_remainder;
681                 if (entry_type->kind == TYPE_BITFIELD) {
682                         size_t size_bits      = entry_type->bitfield.bit_size;
683                         size_t rest_size_bits = (entry_alignment - misalign)*8 - bit_offset;
684
685                         if (size_bits > rest_size_bits) {
686                                 /* start a new bucket */
687                                 offset     += entry_alignment - misalign;
688                                 bit_offset  = 0;
689
690                                 base           = offset;
691                                 bits_remainder = 0;
692                         } else {
693                                 /* put into current bucket */
694                                 base           = offset - misalign;
695                                 bits_remainder = misalign * 8 + bit_offset;
696                         }
697
698                         offset     += size_bits / 8;
699                         bit_offset  = bit_offset + (size_bits % 8);
700                 } else {
701                         size_t entry_size = get_type_size_bytes(base_irtype);
702                         if (misalign > 0 || bit_offset > 0)
703                                 offset += entry_alignment - misalign;
704
705                         base           = offset;
706                         bits_remainder = 0;
707                         offset        += entry_size;
708                         bit_offset     = 0;
709                 }
710
711                 if (entry_alignment > align_all) {
712                         if (entry_alignment % align_all != 0) {
713                                 panic("uneven alignments not supported yet");
714                         }
715                         align_all = entry_alignment;
716                 }
717
718                 set_entity_offset(entity, base);
719                 set_entity_offset_bits_remainder(entity,
720                                                  (unsigned char) bits_remainder);
721                 //add_struct_member(irtype, entity);
722                 entry->declaration.kind = DECLARATION_KIND_COMPOUND_MEMBER;
723                 assert(entry->compound_member.entity == NULL);
724                 entry->compound_member.entity = entity;
725
726 finished_member:
727                 if (is_union) {
728                         size_t entry_size = offset - prev_offset;
729                         if (entry_size > size) {
730                                 size = entry_size;
731                         }
732                         offset     = 0;
733                         bit_offset = 0;
734                 }
735         }
736
737         if (!is_union) {
738                 size = offset;
739         }
740
741         size_t misalign = offset % align_all;
742         if (misalign > 0 || bit_offset > 0) {
743                 size += align_all - misalign;
744         }
745
746         if (outer_offset != NULL) {
747                 if (!is_union) {
748                         *outer_offset = offset;
749                 } else {
750                         *outer_offset += size;
751                 }
752
753                 if (align_all > *outer_align) {
754                         if (align_all % *outer_align != 0) {
755                                 panic("uneven alignments not supported yet");
756                         }
757                         *outer_align = align_all;
758                 }
759         } else {
760                 set_type_alignment_bytes(irtype, align_all);
761                 set_type_size_bytes(irtype, size);
762                 set_type_state(irtype, layout_fixed);
763         }
764
765         return irtype;
766 }
767
768 static ir_type *create_enum_type(enum_type_t *const type)
769 {
770         type->base.firm_type = ir_type_int;
771
772         ir_mode *const mode    = mode_int;
773         tarval  *const one     = get_mode_one(mode);
774         tarval  *      tv_next = get_tarval_null(mode);
775
776         bool constant_folding_old = constant_folding;
777         constant_folding = true;
778
779         enum_t   *enume = type->enume;
780         entity_t *entry = enume->base.next;
781         for (; entry != NULL; entry = entry->base.next) {
782                 if (entry->kind != ENTITY_ENUM_VALUE)
783                         break;
784
785                 expression_t *const init = entry->enum_value.value;
786                 if (init != NULL) {
787                         ir_node *const cnst = expression_to_firm(init);
788                         if (!is_Const(cnst)) {
789                                 panic("couldn't fold constant");
790                         }
791                         tv_next = get_Const_tarval(cnst);
792                 }
793                 entry->enum_value.tv = tv_next;
794                 tv_next = tarval_add(tv_next, one);
795         }
796
797         constant_folding = constant_folding_old;
798
799         return ir_type_int;
800 }
801
802 static ir_type *get_ir_type_incomplete(type_t *type)
803 {
804         assert(type != NULL);
805         type = skip_typeref(type);
806
807         if (type->base.firm_type != NULL) {
808                 assert(type->base.firm_type != INVALID_TYPE);
809                 return type->base.firm_type;
810         }
811
812         switch (type->kind) {
813         case TYPE_COMPOUND_STRUCT:
814                 return create_compound_type(&type->compound, NULL, NULL, NULL,
815                                             true, COMPOUND_IS_STRUCT);
816         case TYPE_COMPOUND_UNION:
817                 return create_compound_type(&type->compound, NULL, NULL, NULL,
818                                             true, COMPOUND_IS_UNION);
819         default:
820                 return get_ir_type(type);
821         }
822 }
823
824 ir_type *get_ir_type(type_t *type)
825 {
826         assert(type != NULL);
827
828         type = skip_typeref(type);
829
830         if (type->base.firm_type != NULL) {
831                 assert(type->base.firm_type != INVALID_TYPE);
832                 return type->base.firm_type;
833         }
834
835         ir_type *firm_type = NULL;
836         switch (type->kind) {
837         case TYPE_ERROR:
838                 /* Happens while constant folding, when there was an error */
839                 return create_atomic_type(&type_void->atomic);
840
841         case TYPE_ATOMIC:
842                 firm_type = create_atomic_type(&type->atomic);
843                 break;
844         case TYPE_COMPLEX:
845                 firm_type = create_complex_type(&type->complex);
846                 break;
847         case TYPE_IMAGINARY:
848                 firm_type = create_imaginary_type(&type->imaginary);
849                 break;
850         case TYPE_FUNCTION:
851                 firm_type = create_method_type(&type->function);
852                 break;
853         case TYPE_POINTER:
854                 firm_type = create_pointer_type(&type->pointer);
855                 break;
856         case TYPE_REFERENCE:
857                 firm_type = create_reference_type(&type->reference);
858                 break;
859         case TYPE_ARRAY:
860                 firm_type = create_array_type(&type->array);
861                 break;
862         case TYPE_COMPOUND_STRUCT:
863                 firm_type = create_compound_type(&type->compound, NULL, NULL, NULL,
864                                                  false, COMPOUND_IS_STRUCT);
865                 break;
866         case TYPE_COMPOUND_UNION:
867                 firm_type = create_compound_type(&type->compound, NULL, NULL, NULL,
868                                                  false, COMPOUND_IS_UNION);
869                 break;
870         case TYPE_ENUM:
871                 firm_type = create_enum_type(&type->enumt);
872                 break;
873         case TYPE_BUILTIN:
874                 firm_type = get_ir_type(type->builtin.real_type);
875                 break;
876         case TYPE_BITFIELD:
877                 firm_type = create_bitfield_type(&type->bitfield);
878                 break;
879
880         case TYPE_TYPEOF:
881         case TYPE_TYPEDEF:
882         case TYPE_INVALID:
883                 break;
884         }
885         if (firm_type == NULL)
886                 panic("unknown type found");
887
888         type->base.firm_type = firm_type;
889         return firm_type;
890 }
891
892 ir_mode *get_ir_mode(type_t *type)
893 {
894         ir_type *irtype = get_ir_type(type);
895
896         /* firm doesn't report a mode for arrays somehow... */
897         if (is_Array_type(irtype)) {
898                 return mode_P_data;
899         }
900
901         ir_mode *mode = get_type_mode(irtype);
902         assert(mode != NULL);
903         return mode;
904 }
905
906 /** Names of the runtime functions. */
907 static const struct {
908         int        id;           /**< the rts id */
909         int        n_res;        /**< number of return values */
910         const char *name;        /**< the name of the rts function */
911         int        n_params;     /**< number of parameters */
912         unsigned   flags;        /**< language flags */
913 } rts_data[] = {
914         { rts_debugbreak, 0, "__debugbreak", 0, _MS },
915         { rts_abort,      0, "abort",        0, _C89 },
916         { rts_alloca,     1, "alloca",       1, _ALL },
917         { rts_abs,        1, "abs",          1, _C89 },
918         { rts_labs,       1, "labs",         1, _C89 },
919         { rts_llabs,      1, "llabs",        1, _C99 },
920         { rts_imaxabs,    1, "imaxabs",      1, _C99 },
921
922         { rts_fabs,       1, "fabs",         1, _C89 },
923         { rts_sqrt,       1, "sqrt",         1, _C89 },
924         { rts_cbrt,       1, "cbrt",         1, _C99 },
925         { rts_exp,        1, "exp",          1, _C89 },
926         { rts_exp2,       1, "exp2",         1, _C89 },
927         { rts_exp10,      1, "exp10",        1, _GNUC },
928         { rts_log,        1, "log",          1, _C89 },
929         { rts_log2,       1, "log2",         1, _C89 },
930         { rts_log10,      1, "log10",        1, _C89 },
931         { rts_pow,        1, "pow",          2, _C89 },
932         { rts_sin,        1, "sin",          1, _C89 },
933         { rts_cos,        1, "cos",          1, _C89 },
934         { rts_tan,        1, "tan",          1, _C89 },
935         { rts_asin,       1, "asin",         1, _C89 },
936         { rts_acos,       1, "acos",         1, _C89 },
937         { rts_atan,       1, "atan",         1, _C89 },
938         { rts_sinh,       1, "sinh",         1, _C89 },
939         { rts_cosh,       1, "cosh",         1, _C89 },
940         { rts_tanh,       1, "tanh",         1, _C89 },
941
942         { rts_fabsf,      1, "fabsf",        1, _C99 },
943         { rts_sqrtf,      1, "sqrtf",        1, _C99 },
944         { rts_cbrtf,      1, "cbrtf",        1, _C99 },
945         { rts_expf,       1, "expf",         1, _C99 },
946         { rts_exp2f,      1, "exp2f",        1, _C99 },
947         { rts_exp10f,     1, "exp10f",       1, _GNUC },
948         { rts_logf,       1, "logf",         1, _C99 },
949         { rts_log2f,      1, "log2f",        1, _C99 },
950         { rts_log10f,     1, "log10f",       1, _C99 },
951         { rts_powf,       1, "powf",         2, _C99 },
952         { rts_sinf,       1, "sinf",         1, _C99 },
953         { rts_cosf,       1, "cosf",         1, _C99 },
954         { rts_tanf,       1, "tanf",         1, _C99 },
955         { rts_asinf,      1, "asinf",        1, _C99 },
956         { rts_acosf,      1, "acosf",        1, _C99 },
957         { rts_atanf,      1, "atanf",        1, _C99 },
958         { rts_sinhf,      1, "sinhf",        1, _C99 },
959         { rts_coshf,      1, "coshf",        1, _C99 },
960         { rts_tanhf,      1, "tanhf",        1, _C99 },
961
962         { rts_fabsl,      1, "fabsl",        1, _C99 },
963         { rts_sqrtl,      1, "sqrtl",        1, _C99 },
964         { rts_cbrtl,      1, "cbrtl",        1, _C99 },
965         { rts_expl,       1, "expl",         1, _C99 },
966         { rts_exp2l,      1, "exp2l",        1, _C99 },
967         { rts_exp10l,     1, "exp10l",       1, _GNUC },
968         { rts_logl,       1, "logl",         1, _C99 },
969         { rts_log2l,      1, "log2l",        1, _C99 },
970         { rts_log10l,     1, "log10l",       1, _C99 },
971         { rts_powl,       1, "powl",         2, _C99 },
972         { rts_sinl,       1, "sinl",         1, _C99 },
973         { rts_cosl,       1, "cosl",         1, _C99 },
974         { rts_tanl,       1, "tanl",         1, _C99 },
975         { rts_asinl,      1, "asinl",        1, _C99 },
976         { rts_acosl,      1, "acosl",        1, _C99 },
977         { rts_atanl,      1, "atanl",        1, _C99 },
978         { rts_sinhl,      1, "sinhl",        1, _C99 },
979         { rts_coshl,      1, "coshl",        1, _C99 },
980         { rts_tanhl,      1, "tanhl",        1, _C99 },
981
982         { rts_memcpy,     1, "memcpy",       3, _C89 },  /* HMM, man say its C99 */
983         { rts_memset,     1, "memset",       3, _C89 },  /* HMM, man say its C99 */
984         { rts_strcmp,     1, "strcmp",       2, _C89 },
985         { rts_strncmp,    1, "strncmp",      3, _C89 }
986 };
987
988 static ident *rts_idents[sizeof(rts_data) / sizeof(rts_data[0])];
989
990 static ident* (*create_ld_ident)(entity_t*) = create_name_linux_elf;
991
992 /**
993  * Handle GNU attributes for entities
994  *
995  * @param ent   the entity
996  * @param decl  the routine declaration
997  */
998 static void handle_gnu_attributes_ent(ir_entity *irentity, entity_t *entity)
999 {
1000         assert(is_declaration(entity));
1001         decl_modifiers_t modifiers = entity->declaration.modifiers;
1002         if (modifiers & DM_PURE) {
1003                 /* TRUE if the declaration includes the GNU
1004                    __attribute__((pure)) specifier. */
1005                 set_entity_additional_property(irentity, mtp_property_pure);
1006         }
1007         if (modifiers & DM_CONST) {
1008                 set_entity_additional_property(irentity, mtp_property_const);
1009                 have_const_functions = true;
1010         }
1011         if (modifiers & DM_USED) {
1012                 /* TRUE if the declaration includes the GNU
1013                    __attribute__((used)) specifier. */
1014                 set_entity_stickyness(irentity, stickyness_sticky);
1015         }
1016 }
1017
1018 static bool is_main(entity_t *entity)
1019 {
1020         static symbol_t *sym_main = NULL;
1021         if (sym_main == NULL) {
1022                 sym_main = symbol_table_insert("main");
1023         }
1024
1025         if (entity->base.symbol != sym_main)
1026                 return false;
1027         /* must be in outermost scope */
1028         if (entity->base.parent_scope != &current_translation_unit->scope)
1029                 return false;
1030
1031         return true;
1032 }
1033
1034 /**
1035  * Creates an entity representing a function.
1036  *
1037  * @param declaration  the function declaration
1038  */
1039 static ir_entity *get_function_entity(entity_t *entity)
1040 {
1041         assert(entity->kind == ENTITY_FUNCTION);
1042         if (entity->function.entity != NULL) {
1043                 return entity->function.entity;
1044         }
1045
1046         if (is_main(entity)) {
1047                 /* force main to C linkage */
1048                 type_t *type = entity->declaration.type;
1049                 assert(is_type_function(type));
1050                 if (type->function.linkage != LINKAGE_C) {
1051                         type_t *new_type           = duplicate_type(type);
1052                         new_type->function.linkage = LINKAGE_C;
1053
1054                         type = typehash_insert(new_type);
1055                         if (type != new_type) {
1056                                 obstack_free(type_obst, new_type);
1057                         }
1058                         entity->declaration.type = type;
1059                 }
1060         }
1061
1062         symbol_t *symbol = entity->base.symbol;
1063         ident    *id     = new_id_from_str(symbol->string);
1064
1065         ir_type   *global_type    = get_glob_type();
1066         ir_type   *ir_type_method = get_ir_type(entity->declaration.type);
1067         bool const has_body       = entity->function.statement != NULL;
1068
1069         /* already an entity defined? */
1070         ir_entity *irentity = entitymap_get(&entitymap, symbol);
1071         if (irentity != NULL) {
1072                 if (get_entity_visibility(irentity) == visibility_external_allocated
1073                                 && has_body) {
1074                         set_entity_visibility(irentity, visibility_external_visible);
1075                 }
1076                 goto entity_created;
1077         }
1078
1079         dbg_info *const dbgi = get_dbg_info(&entity->base.source_position);
1080         irentity             = new_d_entity(global_type, id, ir_type_method, dbgi);
1081         set_entity_ld_ident(irentity, create_ld_ident(entity));
1082
1083         handle_gnu_attributes_ent(irentity, entity);
1084
1085         /* static inline             => local
1086          * extern inline             => local
1087          * inline without definition => local
1088          * inline with definition    => external_visible */
1089         storage_class_tag_t const storage_class
1090                 = (storage_class_tag_t) entity->declaration.storage_class;
1091         bool                const is_inline     = entity->function.is_inline;
1092         if (is_inline && storage_class == STORAGE_CLASS_NONE && has_body) {
1093                 set_entity_visibility(irentity, visibility_external_visible);
1094         } else if (storage_class == STORAGE_CLASS_STATIC ||
1095                    (is_inline && has_body)) {
1096                 if (!has_body) {
1097                         /* this entity was declared, but is defined nowhere */
1098                         set_entity_peculiarity(irentity, peculiarity_description);
1099                 }
1100                 set_entity_visibility(irentity, visibility_local);
1101         } else if (has_body) {
1102                 set_entity_visibility(irentity, visibility_external_visible);
1103         } else {
1104                 set_entity_visibility(irentity, visibility_external_allocated);
1105         }
1106         set_entity_allocation(irentity, allocation_static);
1107
1108         /* We should check for file scope here, but as long as we compile C only
1109            this is not needed. */
1110         if (! firm_opt.freestanding) {
1111                 /* check for a known runtime function */
1112                 for (size_t i = 0; i < sizeof(rts_data) / sizeof(rts_data[0]); ++i) {
1113                         if (id != rts_idents[i])
1114                                 continue;
1115
1116                         /* ignore those rts functions not necessary needed for current mode */
1117                         if ((c_mode & rts_data[i].flags) == 0)
1118                                 continue;
1119                         assert(rts_entities[rts_data[i].id] == NULL);
1120                         rts_entities[rts_data[i].id] = irentity;
1121                 }
1122         }
1123
1124         entitymap_insert(&entitymap, symbol, irentity);
1125
1126 entity_created:
1127         entity->declaration.kind = DECLARATION_KIND_FUNCTION;
1128         entity->function.entity  = irentity;
1129
1130         return irentity;
1131 }
1132
1133 /**
1134  * Creates a Const node representing a constant.
1135  */
1136 static ir_node *const_to_firm(const const_expression_t *cnst)
1137 {
1138         dbg_info *dbgi = get_dbg_info(&cnst->base.source_position);
1139         ir_mode  *mode = get_ir_mode(cnst->base.type);
1140
1141         char    buf[128];
1142         tarval *tv;
1143         size_t  len;
1144         if (mode_is_float(mode)) {
1145                 tv = new_tarval_from_double(cnst->v.float_value, mode);
1146         } else {
1147                 if (mode_is_signed(mode)) {
1148                         len = snprintf(buf, sizeof(buf), "%lld", cnst->v.int_value);
1149                 } else {
1150                         len = snprintf(buf, sizeof(buf), "%llu",
1151                                        (unsigned long long) cnst->v.int_value);
1152                 }
1153                 tv = new_tarval_from_str(buf, len, mode);
1154         }
1155
1156         return new_d_Const(dbgi, tv);
1157 }
1158
1159 /**
1160  * Creates a Const node representing a character constant.
1161  */
1162 static ir_node *character_constant_to_firm(const const_expression_t *cnst)
1163 {
1164         dbg_info *dbgi = get_dbg_info(&cnst->base.source_position);
1165         ir_mode  *mode = get_ir_mode(cnst->base.type);
1166
1167         long long int v = 0;
1168         for (size_t i = 0; i < cnst->v.character.size; ++i) {
1169                 if (char_is_signed) {
1170                         v = (v << 8) | ((signed char)cnst->v.character.begin[i]);
1171                 } else {
1172                         v = (v << 8) | ((unsigned char)cnst->v.character.begin[i]);
1173                 }
1174         }
1175         char    buf[128];
1176         size_t  len = snprintf(buf, sizeof(buf), "%lld", v);
1177         tarval *tv = new_tarval_from_str(buf, len, mode);
1178
1179         return new_d_Const(dbgi, tv);
1180 }
1181
1182 /**
1183  * Creates a Const node representing a wide character constant.
1184  */
1185 static ir_node *wide_character_constant_to_firm(const const_expression_t *cnst)
1186 {
1187         dbg_info *dbgi = get_dbg_info(&cnst->base.source_position);
1188         ir_mode  *mode = get_ir_mode(cnst->base.type);
1189
1190         long long int v = cnst->v.wide_character.begin[0];
1191
1192         char    buf[128];
1193         size_t  len = snprintf(buf, sizeof(buf), "%lld", v);
1194         tarval *tv = new_tarval_from_str(buf, len, mode);
1195
1196         return new_d_Const(dbgi, tv);
1197 }
1198
1199 /**
1200  * Creates a SymConst for a given entity.
1201  *
1202  * @param dbgi    debug info
1203  * @param mode    the (reference) mode for the SymConst
1204  * @param entity  the entity
1205  */
1206 static ir_node *create_symconst(dbg_info *dbgi, ir_mode *mode,
1207                               ir_entity *entity)
1208 {
1209         assert(entity != NULL);
1210         union symconst_symbol sym;
1211         sym.entity_p = entity;
1212         return new_d_SymConst(dbgi, mode, sym, symconst_addr_ent);
1213 }
1214
1215 /**
1216  * Creates a SymConst node representing a string constant.
1217  *
1218  * @param src_pos    the source position of the string constant
1219  * @param id_prefix  a prefix for the name of the generated string constant
1220  * @param value      the value of the string constant
1221  */
1222 static ir_node *string_to_firm(const source_position_t *const src_pos,
1223                                const char *const id_prefix,
1224                                const string_t *const value)
1225 {
1226         ir_type  *const global_type = get_glob_type();
1227         dbg_info *const dbgi        = get_dbg_info(src_pos);
1228         ir_type  *const type        = new_d_type_array(id_unique("strtype.%u"), 1,
1229                                                        ir_type_const_char, dbgi);
1230
1231         ident     *const id     = id_unique(id_prefix);
1232         ir_entity *const entity = new_d_entity(global_type, id, type, dbgi);
1233         set_entity_ld_ident(entity, id);
1234         set_entity_variability(entity, variability_constant);
1235         set_entity_allocation(entity, allocation_static);
1236
1237         ir_type *const elem_type = ir_type_const_char;
1238         ir_mode *const mode      = get_type_mode(elem_type);
1239
1240         const char* const string = value->begin;
1241         const size_t      slen   = value->size;
1242
1243         set_array_lower_bound_int(type, 0, 0);
1244         set_array_upper_bound_int(type, 0, slen);
1245         set_type_size_bytes(type, slen);
1246         set_type_state(type, layout_fixed);
1247
1248         tarval **const tvs = xmalloc(slen * sizeof(tvs[0]));
1249         for (size_t i = 0; i < slen; ++i) {
1250                 tvs[i] = new_tarval_from_long(string[i], mode);
1251         }
1252
1253         set_array_entity_values(entity, tvs, slen);
1254         free(tvs);
1255
1256         return create_symconst(dbgi, mode_P_data, entity);
1257 }
1258
1259 /**
1260  * Creates a SymConst node representing a string literal.
1261  *
1262  * @param literal   the string literal
1263  */
1264 static ir_node *string_literal_to_firm(
1265                 const string_literal_expression_t* literal)
1266 {
1267         return string_to_firm(&literal->base.source_position, "Lstr.%u",
1268                               &literal->value);
1269 }
1270
1271 /**
1272  * Creates a SymConst node representing a wide string literal.
1273  *
1274  * @param literal   the wide string literal
1275  */
1276 static ir_node *wide_string_literal_to_firm(
1277         const wide_string_literal_expression_t* const literal)
1278 {
1279         ir_type *const global_type = get_glob_type();
1280         ir_type *const elem_type   = ir_type_wchar_t;
1281         dbg_info *const dbgi       = get_dbg_info(&literal->base.source_position);
1282         ir_type *const type        = new_d_type_array(id_unique("strtype.%u"), 1,
1283                                                     elem_type, dbgi);
1284
1285         ident     *const id     = id_unique("Lstr.%u");
1286         ir_entity *const entity = new_d_entity(global_type, id, type, dbgi);
1287         set_entity_ld_ident(entity, id);
1288         set_entity_variability(entity, variability_constant);
1289         set_entity_allocation(entity, allocation_static);
1290
1291         ir_mode *const mode      = get_type_mode(elem_type);
1292
1293         const wchar_rep_t *const string = literal->value.begin;
1294         const size_t             slen   = literal->value.size;
1295
1296         set_array_lower_bound_int(type, 0, 0);
1297         set_array_upper_bound_int(type, 0, slen);
1298         set_type_size_bytes(type, slen);
1299         set_type_state(type, layout_fixed);
1300
1301         tarval **const tvs = xmalloc(slen * sizeof(tvs[0]));
1302         for (size_t i = 0; i < slen; ++i) {
1303                 tvs[i] = new_tarval_from_long(string[i], mode);
1304         }
1305
1306         set_array_entity_values(entity, tvs, slen);
1307         free(tvs);
1308
1309         return create_symconst(dbgi, mode_P_data, entity);
1310 }
1311
1312 static ir_node *deref_address(dbg_info *const dbgi, type_t *const type,
1313                                       ir_node *const addr)
1314 {
1315         ir_type *irtype = get_ir_type(type);
1316         if (is_compound_type(irtype)
1317                         || is_Method_type(irtype)
1318                         || is_Array_type(irtype)) {
1319                 return addr;
1320         }
1321
1322         ir_mode *const mode     = get_type_mode(irtype);
1323         ir_node *const memory   = get_store();
1324         ir_node *const load     = new_d_Load(dbgi, memory, addr, mode);
1325         ir_node *const load_mem = new_d_Proj(dbgi, load, mode_M, pn_Load_M);
1326         ir_node *const load_res = new_d_Proj(dbgi, load, mode,   pn_Load_res);
1327
1328         if (type->base.qualifiers & TYPE_QUALIFIER_VOLATILE && !is_Bad(load)) {
1329                 set_Load_volatility(load, volatility_is_volatile);
1330         }
1331
1332         set_store(load_mem);
1333         return load_res;
1334 }
1335
1336 /**
1337  * Creates a strict Conv if neccessary.
1338  */
1339 static ir_node *do_strict_conv(dbg_info *dbgi, ir_node *node)
1340 {
1341         ir_mode *mode = get_irn_mode(node);
1342
1343         if (!(get_irg_fp_model(current_ir_graph) & fp_explicit_rounding))
1344                 return node;
1345         if (!mode_is_float(mode))
1346                 return node;
1347
1348         /* check if there is already a Conv */
1349         if (is_Conv(node)) {
1350                 /* convert it into a strict Conv */
1351                 set_Conv_strict(node, 1);
1352                 return node;
1353         }
1354
1355         /* otherwise create a new one */
1356         return new_d_strictConv(dbgi, node, mode);
1357 }
1358
1359 static ir_node *get_global_var_address(dbg_info *const dbgi,
1360                                        const entity_t *const entity)
1361 {
1362         assert(entity->kind == ENTITY_VARIABLE);
1363         assert(entity->declaration.kind == DECLARATION_KIND_GLOBAL_VARIABLE);
1364
1365         ir_entity *const irentity = entity->variable.v.entity;
1366         if (entity->variable.thread_local) {
1367                 ir_node *const no_mem = new_NoMem();
1368                 ir_node *const tls    = get_irg_tls(current_ir_graph);
1369                 return new_d_simpleSel(dbgi, no_mem, tls, irentity);
1370         } else {
1371                 return create_symconst(dbgi, mode_P_data, irentity);
1372         }
1373 }
1374
1375 /**
1376  * Returns the correct base address depending on whether it is a parameter or a
1377  * normal local variable.
1378  */
1379 static ir_node *get_local_frame(ir_entity *const ent)
1380 {
1381         ir_graph      *const irg   = current_ir_graph;
1382         const ir_type *const owner = get_entity_owner(ent);
1383         if (owner == get_irg_frame_type(irg)) {
1384                 return get_irg_frame(irg);
1385         } else {
1386                 assert(owner == get_method_value_param_type(get_entity_type(get_irg_entity(irg))));
1387                 return get_irg_value_param_base(irg);
1388         }
1389 }
1390
1391 static ir_node *create_conv(dbg_info *dbgi, ir_node *value, ir_mode *dest_mode)
1392 {
1393         ir_mode *value_mode = get_irn_mode(value);
1394
1395         if (value_mode == dest_mode || is_Bad(value))
1396                 return value;
1397
1398         if (dest_mode == mode_b) {
1399                 ir_node *zero = new_Const(get_mode_null(value_mode));
1400                 ir_node *cmp  = new_d_Cmp(dbgi, value, zero);
1401                 ir_node *proj = new_d_Proj(dbgi, cmp, mode_b, pn_Cmp_Lg);
1402                 return proj;
1403         }
1404
1405         return new_d_Conv(dbgi, value, dest_mode);
1406 }
1407
1408 /**
1409  * Keep all memory edges of the given block.
1410  */
1411 static void keep_all_memory(ir_node *block) {
1412         ir_node *old = get_cur_block();
1413
1414         set_cur_block(block);
1415         keep_alive(get_store());
1416         /* TODO: keep all memory edges from restricted pointers */
1417         set_cur_block(old);
1418 }
1419
1420 static ir_node *reference_expression_enum_value_to_firm(
1421                 const reference_expression_t *ref)
1422 {
1423         entity_t *entity = ref->entity;
1424         type_t   *type   = skip_typeref(entity->enum_value.enum_type);
1425         /* make sure the type is constructed */
1426         (void) get_ir_type(type);
1427
1428         return new_Const(entity->enum_value.tv);
1429 }
1430
1431 static ir_node *reference_expression_to_firm(const reference_expression_t *ref)
1432 {
1433         dbg_info *dbgi   = get_dbg_info(&ref->base.source_position);
1434         entity_t *entity = ref->entity;
1435         assert(is_declaration(entity));
1436         type_t   *type   = skip_typeref(entity->declaration.type);
1437
1438         /* make sure the type is constructed */
1439         (void) get_ir_type(type);
1440
1441         switch ((declaration_kind_t) entity->declaration.kind) {
1442         case DECLARATION_KIND_UNKNOWN:
1443                 break;
1444
1445         case DECLARATION_KIND_LOCAL_VARIABLE: {
1446                 ir_mode *const mode = get_ir_mode(type);
1447                 return get_value(entity->variable.v.value_number, mode);
1448         }
1449         case DECLARATION_KIND_PARAMETER: {
1450                 ir_mode *const mode = get_ir_mode(type);
1451                 return get_value(entity->parameter.v.value_number, mode);
1452         }
1453         case DECLARATION_KIND_FUNCTION: {
1454                 ir_mode *const mode = get_ir_mode(type);
1455                 return create_symconst(dbgi, mode, entity->function.entity);
1456         }
1457         case DECLARATION_KIND_INNER_FUNCTION: {
1458                 ir_mode *const mode = get_ir_mode(type);
1459                 if (!entity->function.goto_to_outer && !entity->function.need_closure) {
1460                         /* inner function not using the closure */
1461                         return create_symconst(dbgi, mode, entity->function.entity);
1462                 } else {
1463                         /* TODO: need trampoline here */
1464                         panic("Trampoline code not implemented");
1465                         return create_symconst(dbgi, mode, entity->function.entity);
1466                 }
1467         }
1468         case DECLARATION_KIND_GLOBAL_VARIABLE: {
1469                 ir_node *const addr = get_global_var_address(dbgi, entity);
1470                 return deref_address(dbgi, entity->declaration.type, addr);
1471         }
1472
1473         case DECLARATION_KIND_LOCAL_VARIABLE_ENTITY: {
1474                 ir_entity *irentity = entity->variable.v.entity;
1475                 ir_node   *frame    = get_local_frame(irentity);
1476                 ir_node   *sel = new_d_simpleSel(dbgi, new_NoMem(), frame, irentity);
1477                 return deref_address(dbgi, entity->declaration.type, sel);
1478         }
1479         case DECLARATION_KIND_PARAMETER_ENTITY: {
1480                 ir_entity *irentity = entity->parameter.v.entity;
1481                 ir_node   *frame    = get_local_frame(irentity);
1482                 ir_node   *sel = new_d_simpleSel(dbgi, new_NoMem(), frame, irentity);
1483                 return deref_address(dbgi, entity->declaration.type, sel);
1484         }
1485
1486         case DECLARATION_KIND_VARIABLE_LENGTH_ARRAY:
1487                 return entity->variable.v.vla_base;
1488
1489         case DECLARATION_KIND_COMPOUND_MEMBER:
1490                 panic("not implemented reference type");
1491         }
1492
1493         panic("reference to declaration with unknown type found");
1494 }
1495
1496 static ir_node *reference_addr(const reference_expression_t *ref)
1497 {
1498         dbg_info *dbgi   = get_dbg_info(&ref->base.source_position);
1499         entity_t *entity = ref->entity;
1500         assert(is_declaration(entity));
1501
1502         switch((declaration_kind_t) entity->declaration.kind) {
1503         case DECLARATION_KIND_UNKNOWN:
1504                 break;
1505         case DECLARATION_KIND_PARAMETER:
1506         case DECLARATION_KIND_LOCAL_VARIABLE:
1507                 /* you can store to a local variable (so we don't panic but return NULL
1508                  * as an indicator for no real address) */
1509                 return NULL;
1510         case DECLARATION_KIND_GLOBAL_VARIABLE: {
1511                 ir_node *const addr = get_global_var_address(dbgi, entity);
1512                 return addr;
1513         }
1514         case DECLARATION_KIND_LOCAL_VARIABLE_ENTITY: {
1515                 ir_entity *irentity = entity->variable.v.entity;
1516                 ir_node   *frame    = get_local_frame(irentity);
1517                 ir_node   *sel = new_d_simpleSel(dbgi, new_NoMem(), frame, irentity);
1518
1519                 return sel;
1520         }
1521         case DECLARATION_KIND_PARAMETER_ENTITY: {
1522                 ir_entity *irentity = entity->parameter.v.entity;
1523                 ir_node   *frame    = get_local_frame(irentity);
1524                 ir_node   *sel = new_d_simpleSel(dbgi, new_NoMem(), frame, irentity);
1525
1526                 return sel;
1527         }
1528
1529         case DECLARATION_KIND_VARIABLE_LENGTH_ARRAY:
1530                 return entity->variable.v.vla_base;
1531
1532         case DECLARATION_KIND_FUNCTION: {
1533                 type_t  *const type = skip_typeref(entity->declaration.type);
1534                 ir_mode *const mode = get_ir_mode(type);
1535                 return create_symconst(dbgi, mode, entity->function.entity);
1536         }
1537
1538         case DECLARATION_KIND_INNER_FUNCTION:
1539         case DECLARATION_KIND_COMPOUND_MEMBER:
1540                 panic("not implemented reference type");
1541         }
1542
1543         panic("reference to declaration with unknown type found");
1544 }
1545
1546 /**
1547  * Transform calls to builtin functions.
1548  */
1549 static ir_node *process_builtin_call(const call_expression_t *call)
1550 {
1551         dbg_info *dbgi = get_dbg_info(&call->base.source_position);
1552
1553         assert(call->function->kind == EXPR_BUILTIN_SYMBOL);
1554         builtin_symbol_expression_t *builtin = &call->function->builtin_symbol;
1555
1556         type_t *type = skip_typeref(builtin->base.type);
1557         assert(is_type_pointer(type));
1558
1559         type_t   *function_type = skip_typeref(type->pointer.points_to);
1560         symbol_t *symbol        = builtin->symbol;
1561
1562         switch(symbol->ID) {
1563         case T___builtin_alloca: {
1564                 if (call->arguments == NULL || call->arguments->next != NULL) {
1565                         panic("invalid number of parameters on __builtin_alloca");
1566                 }
1567                 expression_t *argument = call->arguments->expression;
1568                 ir_node      *size     = expression_to_firm(argument);
1569
1570                 ir_node *store  = get_store();
1571                 ir_node *alloca = new_d_Alloc(dbgi, store, size, firm_unknown_type,
1572                                               stack_alloc);
1573                 ir_node *proj_m = new_Proj(alloca, mode_M, pn_Alloc_M);
1574                 set_store(proj_m);
1575                 ir_node *res    = new_Proj(alloca, mode_P_data, pn_Alloc_res);
1576
1577                 return res;
1578         }
1579
1580         case T___builtin_huge_val:
1581         case T___builtin_inf:
1582         case T___builtin_inff:
1583         case T___builtin_infl: {
1584                 ir_mode *mode = get_ir_mode(function_type->function.return_type);
1585                 tarval  *tv   = get_mode_infinite(mode);
1586                 ir_node *res  = new_d_Const(dbgi, tv);
1587                 return   res;
1588         }
1589         case T___builtin_nan:
1590         case T___builtin_nanf:
1591         case T___builtin_nanl: {
1592                 /* Ignore string for now... */
1593                 assert(is_type_function(function_type));
1594                 ir_mode *mode = get_ir_mode(function_type->function.return_type);
1595                 tarval  *tv   = get_mode_NAN(mode);
1596                 ir_node *res  = new_d_Const(dbgi, tv);
1597                 return res;
1598         }
1599         case T___builtin_expect: {
1600                 expression_t *argument = call->arguments->expression;
1601                 return _expression_to_firm(argument);
1602         }
1603         case T___builtin_va_end:
1604                 /* evaluate the argument of va_end for its side effects */
1605                 _expression_to_firm(call->arguments->expression);
1606                 return NULL;
1607         default:
1608                 panic("unsupported builtin found");
1609         }
1610 }
1611
1612 /**
1613  * Transform a call expression.
1614  * Handles some special cases, like alloca() calls, which must be resolved
1615  * BEFORE the inlines runs. Inlining routines calling alloca() is dangerous,
1616  * 176.gcc for instance might allocate 2GB instead of 256 MB if alloca is not
1617  * handled right...
1618  */
1619 static ir_node *call_expression_to_firm(const call_expression_t *call)
1620 {
1621         dbg_info *dbgi  = get_dbg_info(&call->base.source_position);
1622         assert(get_cur_block() != NULL);
1623
1624         expression_t *function = call->function;
1625         if (function->kind == EXPR_BUILTIN_SYMBOL) {
1626                 return process_builtin_call(call);
1627         }
1628         if (function->kind == EXPR_REFERENCE) {
1629                 const reference_expression_t *ref    = &function->reference;
1630                 entity_t                     *entity = ref->entity;
1631
1632                 if (entity->kind == ENTITY_FUNCTION
1633                                 && entity->function.entity == rts_entities[rts_alloca]) {
1634                         /* handle alloca() call */
1635                         expression_t *argument = call->arguments->expression;
1636                         ir_node      *size     = expression_to_firm(argument);
1637
1638                         size = create_conv(dbgi, size, get_ir_mode(type_size_t));
1639
1640                         ir_node  *store  = get_store();
1641                         dbg_info *dbgi   = get_dbg_info(&call->base.source_position);
1642                         ir_node  *alloca = new_d_Alloc(dbgi, store, size, firm_unknown_type,
1643                                                        stack_alloc);
1644                         ir_node  *proj_m = new_Proj(alloca, mode_M, pn_Alloc_M);
1645                         set_store(proj_m);
1646                         ir_node  *res    = new_Proj(alloca, mode_P_data, pn_Alloc_res);
1647
1648                         return res;
1649                 }
1650         }
1651         ir_node *callee = expression_to_firm(function);
1652
1653         type_t *type = skip_typeref(function->base.type);
1654         assert(is_type_pointer(type));
1655         pointer_type_t *pointer_type = &type->pointer;
1656         type_t         *points_to    = skip_typeref(pointer_type->points_to);
1657         assert(is_type_function(points_to));
1658         function_type_t *function_type = &points_to->function;
1659
1660         int      n_parameters = 0;
1661         ir_type *ir_method_type  = get_ir_type((type_t*) function_type);
1662         ir_type *new_method_type = NULL;
1663         if (function_type->variadic || function_type->unspecified_parameters) {
1664                 const call_argument_t *argument = call->arguments;
1665                 for ( ; argument != NULL; argument = argument->next) {
1666                         ++n_parameters;
1667                 }
1668
1669                 /* we need to construct a new method type matching the call
1670                  * arguments... */
1671                 int n_res       = get_method_n_ress(ir_method_type);
1672                 dbg_info *dbgi  = get_dbg_info(&call->base.source_position);
1673                 new_method_type = new_d_type_method(id_unique("calltype.%u"),
1674                                                     n_parameters, n_res, dbgi);
1675                 set_method_calling_convention(new_method_type,
1676                                get_method_calling_convention(ir_method_type));
1677                 set_method_additional_properties(new_method_type,
1678                                get_method_additional_properties(ir_method_type));
1679                 set_method_variadicity(new_method_type,
1680                                        get_method_variadicity(ir_method_type));
1681
1682                 for (int i = 0; i < n_res; ++i) {
1683                         set_method_res_type(new_method_type, i,
1684                                             get_method_res_type(ir_method_type, i));
1685                 }
1686                 argument = call->arguments;
1687                 for (int i = 0; i < n_parameters; ++i, argument = argument->next) {
1688                         expression_t *expression = argument->expression;
1689                         ir_type      *irtype     = get_ir_type(expression->base.type);
1690                         set_method_param_type(new_method_type, i, irtype);
1691                 }
1692                 ir_method_type = new_method_type;
1693         } else {
1694                 n_parameters = get_method_n_params(ir_method_type);
1695         }
1696
1697         ir_node *in[n_parameters];
1698
1699         const call_argument_t *argument = call->arguments;
1700         for (int n = 0; n < n_parameters; ++n) {
1701                 expression_t *expression = argument->expression;
1702                 ir_node      *arg_node   = expression_to_firm(expression);
1703
1704                 arg_node = do_strict_conv(dbgi, arg_node);
1705
1706                 in[n] = arg_node;
1707
1708                 argument = argument->next;
1709         }
1710
1711         ir_node  *store = get_store();
1712         ir_node  *node  = new_d_Call(dbgi, store, callee, n_parameters, in,
1713                                      ir_method_type);
1714         ir_node  *mem   = new_d_Proj(dbgi, node, mode_M, pn_Call_M_regular);
1715         set_store(mem);
1716
1717         type_t  *return_type = skip_typeref(function_type->return_type);
1718         ir_node *result      = NULL;
1719
1720         if (!is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
1721                 ir_mode *mode;
1722                 if (is_type_scalar(return_type)) {
1723                         mode = get_ir_mode(return_type);
1724                 } else {
1725                         mode = mode_P_data;
1726                 }
1727                 ir_node *resproj = new_d_Proj(dbgi, node, mode_T, pn_Call_T_result);
1728                 result           = new_d_Proj(dbgi, resproj, mode, 0);
1729         }
1730
1731         if (function->kind == EXPR_REFERENCE &&
1732             function->reference.entity->declaration.modifiers & DM_NORETURN) {
1733                 /* A dead end:  Keep the Call and the Block.  Also place all further
1734                  * nodes into a new and unreachable block. */
1735                 keep_alive(node);
1736                 keep_alive(get_cur_block());
1737                 new_Block(0, NULL);
1738         }
1739
1740         return result;
1741 }
1742
1743 static void statement_to_firm(statement_t *statement);
1744 static ir_node *compound_statement_to_firm(compound_statement_t *compound);
1745
1746 static ir_node *expression_to_addr(const expression_t *expression);
1747 static ir_node *create_condition_evaluation(const expression_t *expression,
1748                                             ir_node *true_block,
1749                                             ir_node *false_block);
1750
1751 static void assign_value(dbg_info *dbgi, ir_node *addr, type_t *type,
1752                          ir_node *value)
1753 {
1754         value = do_strict_conv(dbgi, value);
1755
1756         ir_node *memory = get_store();
1757
1758         if (is_type_scalar(type)) {
1759                 ir_node  *store     = new_d_Store(dbgi, memory, addr, value);
1760                 ir_node  *store_mem = new_d_Proj(dbgi, store, mode_M, pn_Store_M);
1761                 if (type->base.qualifiers & TYPE_QUALIFIER_VOLATILE && !is_Bad(store))
1762                         set_Store_volatility(store, volatility_is_volatile);
1763                 set_store(store_mem);
1764         } else {
1765                 ir_type *irtype    = get_ir_type(type);
1766                 ir_node *copyb     = new_d_CopyB(dbgi, memory, addr, value, irtype);
1767                 ir_node *copyb_mem = new_Proj(copyb, mode_M, pn_CopyB_M_regular);
1768                 set_store(copyb_mem);
1769         }
1770 }
1771
1772 static tarval *create_bitfield_mask(ir_mode *mode, int offset, int size)
1773 {
1774         tarval *all_one   = get_mode_all_one(mode);
1775         int     mode_size = get_mode_size_bits(mode);
1776
1777         assert(offset >= 0);
1778         assert(size   >= 0);
1779         assert(offset + size <= mode_size);
1780         if (size == mode_size) {
1781                 return all_one;
1782         }
1783
1784         long    shiftr    = get_mode_size_bits(mode) - size;
1785         long    shiftl    = offset;
1786         tarval *tv_shiftr = new_tarval_from_long(shiftr, mode_uint);
1787         tarval *tv_shiftl = new_tarval_from_long(shiftl, mode_uint);
1788         tarval *mask0     = tarval_shr(all_one, tv_shiftr);
1789         tarval *mask1     = tarval_shl(mask0, tv_shiftl);
1790
1791         return mask1;
1792 }
1793
1794 static void bitfield_store_to_firm(dbg_info *dbgi,
1795                 ir_entity *entity, ir_node *addr, ir_node *value, bool set_volatile)
1796 {
1797         ir_type *entity_type = get_entity_type(entity);
1798         ir_type *base_type   = get_primitive_base_type(entity_type);
1799         assert(base_type != NULL);
1800         ir_mode *mode        = get_type_mode(base_type);
1801
1802         value = create_conv(dbgi, value, mode);
1803
1804         /* kill upper bits of value and shift to right position */
1805         int      bitoffset    = get_entity_offset_bits_remainder(entity);
1806         int      bitsize      = get_mode_size_bits(get_type_mode(entity_type));
1807
1808         tarval  *mask            = create_bitfield_mask(mode, 0, bitsize);
1809         ir_node *mask_node       = new_d_Const(dbgi, mask);
1810         ir_node *value_masked    = new_d_And(dbgi, value, mask_node, mode);
1811         tarval  *shiftl          = new_tarval_from_long(bitoffset, mode_uint);
1812         ir_node *shiftcount      = new_d_Const(dbgi, shiftl);
1813         ir_node *value_maskshift = new_d_Shl(dbgi, value_masked, shiftcount, mode);
1814
1815         /* load current value */
1816         ir_node  *mem             = get_store();
1817         ir_node  *load            = new_d_Load(dbgi, mem, addr, mode);
1818         ir_node  *load_mem        = new_d_Proj(dbgi, load, mode_M, pn_Load_M);
1819         ir_node  *load_res        = new_d_Proj(dbgi, load, mode, pn_Load_res);
1820         tarval   *shift_mask      = create_bitfield_mask(mode, bitoffset, bitsize);
1821         tarval   *inv_mask        = tarval_not(shift_mask);
1822         ir_node  *inv_mask_node   = new_d_Const(dbgi, inv_mask);
1823         ir_node  *load_res_masked = new_d_And(dbgi, load_res, inv_mask_node, mode);
1824
1825         /* construct new value and store */
1826         ir_node *new_val   = new_d_Or(dbgi, load_res_masked, value_maskshift, mode);
1827         ir_node *store     = new_d_Store(dbgi, load_mem, addr, new_val);
1828         ir_node *store_mem = new_d_Proj(dbgi, store, mode_M, pn_Store_M);
1829         set_store(store_mem);
1830
1831         if (set_volatile) {
1832                 if (!is_Bad(load))
1833                         set_Load_volatility(load, volatility_is_volatile);
1834                 if (!is_Bad(store))
1835                         set_Store_volatility(store, volatility_is_volatile);
1836         }
1837 }
1838
1839 static ir_node *bitfield_extract_to_firm(const select_expression_t *expression,
1840                 ir_node *addr)
1841 {
1842         dbg_info *dbgi     = get_dbg_info(&expression->base.source_position);
1843         type_t   *type     = expression->base.type;
1844         ir_mode  *mode     = get_ir_mode(type);
1845         ir_node  *mem      = get_store();
1846         ir_node  *load     = new_d_Load(dbgi, mem, addr, mode);
1847         ir_node  *load_mem = new_d_Proj(dbgi, load, mode_M, pn_Load_M);
1848         ir_node  *load_res = new_d_Proj(dbgi, load, mode, pn_Load_res);
1849
1850         load_res           = create_conv(dbgi, load_res, mode_int);
1851
1852         set_store(load_mem);
1853
1854         /* kill upper bits */
1855         assert(expression->compound_entry->kind == ENTITY_COMPOUND_MEMBER);
1856         ir_entity *entity       = expression->compound_entry->compound_member.entity;
1857         int        bitoffset    = get_entity_offset_bits_remainder(entity);
1858         ir_type   *entity_type  = get_entity_type(entity);
1859         int        bitsize      = get_mode_size_bits(get_type_mode(entity_type));
1860         long       shift_bitsl  = machine_size - bitoffset - bitsize;
1861         assert(shift_bitsl >= 0);
1862         tarval    *tvl          = new_tarval_from_long(shift_bitsl, mode_uint);
1863         ir_node   *countl       = new_d_Const(dbgi, tvl);
1864         ir_node   *shiftl       = new_d_Shl(dbgi, load_res, countl, mode_int);
1865
1866         long       shift_bitsr  = bitoffset + shift_bitsl;
1867         assert(shift_bitsr <= (long) machine_size);
1868         tarval    *tvr          = new_tarval_from_long(shift_bitsr, mode_uint);
1869         ir_node   *countr       = new_d_Const(dbgi, tvr);
1870         ir_node   *shiftr;
1871         if (mode_is_signed(mode)) {
1872                 shiftr = new_d_Shrs(dbgi, shiftl, countr, mode_int);
1873         } else {
1874                 shiftr = new_d_Shr(dbgi, shiftl, countr, mode_int);
1875         }
1876
1877         return create_conv(dbgi, shiftr, mode);
1878 }
1879
1880 /* make sure the selected compound type is constructed */
1881 static void construct_select_compound(const select_expression_t *expression)
1882 {
1883         type_t *type = skip_typeref(expression->compound->base.type);
1884         if (is_type_pointer(type)) {
1885                 type = type->pointer.points_to;
1886         }
1887         (void) get_ir_type(type);
1888 }
1889
1890 static void set_value_for_expression_addr(const expression_t *expression,
1891                                           ir_node *value, ir_node *addr)
1892 {
1893         dbg_info *dbgi = get_dbg_info(&expression->base.source_position);
1894         value          = do_strict_conv(dbgi, value);
1895
1896         if (expression->kind == EXPR_REFERENCE) {
1897                 const reference_expression_t *ref = &expression->reference;
1898
1899                 entity_t *entity = ref->entity;
1900                 assert(is_declaration(entity));
1901                 assert(entity->declaration.kind != DECLARATION_KIND_UNKNOWN);
1902                 if (entity->declaration.kind == DECLARATION_KIND_LOCAL_VARIABLE) {
1903                         set_value(entity->variable.v.value_number, value);
1904                         return;
1905                 } else if (entity->declaration.kind == DECLARATION_KIND_PARAMETER) {
1906                         set_value(entity->parameter.v.value_number, value);
1907                         return;
1908                 }
1909         }
1910
1911         if (addr == NULL)
1912                 addr = expression_to_addr(expression);
1913         assert(addr != NULL);
1914
1915         type_t *type = skip_typeref(expression->base.type);
1916
1917         if (expression->kind == EXPR_SELECT) {
1918                 const select_expression_t *select = &expression->select;
1919
1920                 construct_select_compound(select);
1921
1922                 entity_t *entity = select->compound_entry;
1923                 assert(entity->kind == ENTITY_COMPOUND_MEMBER);
1924                 if (entity->declaration.type->kind == TYPE_BITFIELD) {
1925                         ir_entity *irentity = entity->compound_member.entity;
1926                         bool       set_volatile
1927                                 = select->base.type->base.qualifiers & TYPE_QUALIFIER_VOLATILE;
1928                         bitfield_store_to_firm(dbgi, irentity, addr, value, set_volatile);
1929                         return;
1930                 }
1931         }
1932
1933         assign_value(dbgi, addr, type, value);
1934 }
1935
1936 static void set_value_for_expression(const expression_t *expression,
1937                                      ir_node *value)
1938 {
1939         set_value_for_expression_addr(expression, value, NULL);
1940 }
1941
1942 static ir_node *get_value_from_lvalue(const expression_t *expression,
1943                                       ir_node *addr)
1944 {
1945         if (expression->kind == EXPR_REFERENCE) {
1946                 const reference_expression_t *ref = &expression->reference;
1947
1948                 entity_t *entity = ref->entity;
1949                 assert(entity->kind == ENTITY_VARIABLE
1950                                 || entity->kind == ENTITY_PARAMETER);
1951                 assert(entity->declaration.kind != DECLARATION_KIND_UNKNOWN);
1952                 if (entity->declaration.kind == DECLARATION_KIND_LOCAL_VARIABLE) {
1953                         assert(addr == NULL);
1954                         ir_mode *mode = get_ir_mode(expression->base.type);
1955                         return get_value(entity->variable.v.value_number, mode);
1956                 } else if (entity->declaration.kind == DECLARATION_KIND_PARAMETER) {
1957                         assert(addr == NULL);
1958                         ir_mode *mode = get_ir_mode(expression->base.type);
1959                         return get_value(entity->parameter.v.value_number, mode);
1960                 }
1961         }
1962
1963         assert(addr != NULL);
1964         dbg_info *dbgi = get_dbg_info(&expression->base.source_position);
1965
1966         ir_node *value;
1967         if (expression->kind == EXPR_SELECT &&
1968             expression->select.compound_entry->declaration.type->kind == TYPE_BITFIELD){
1969             construct_select_compound(&expression->select);
1970                 value = bitfield_extract_to_firm(&expression->select, addr);
1971         } else {
1972                 value = deref_address(dbgi, expression->base.type, addr);
1973         }
1974
1975         return value;
1976 }
1977
1978
1979 static ir_node *create_incdec(const unary_expression_t *expression)
1980 {
1981         dbg_info *const     dbgi = get_dbg_info(&expression->base.source_position);
1982         const expression_t *value_expr = expression->value;
1983         ir_node            *addr       = expression_to_addr(value_expr);
1984         ir_node            *value      = get_value_from_lvalue(value_expr, addr);
1985
1986         type_t  *type = skip_typeref(expression->base.type);
1987         ir_mode *mode = get_ir_mode(expression->base.type);
1988
1989         ir_node *offset;
1990         if (is_type_pointer(type)) {
1991                 pointer_type_t *pointer_type = &type->pointer;
1992                 offset                       = get_type_size(pointer_type->points_to);
1993         } else {
1994                 assert(is_type_arithmetic(type));
1995                 offset = new_Const(get_mode_one(mode));
1996         }
1997
1998         ir_node *result;
1999         ir_node *store_value;
2000         switch(expression->base.kind) {
2001         case EXPR_UNARY_POSTFIX_INCREMENT:
2002                 result      = value;
2003                 store_value = new_d_Add(dbgi, value, offset, mode);
2004                 break;
2005         case EXPR_UNARY_POSTFIX_DECREMENT:
2006                 result      = value;
2007                 store_value = new_d_Sub(dbgi, value, offset, mode);
2008                 break;
2009         case EXPR_UNARY_PREFIX_INCREMENT:
2010                 result      = new_d_Add(dbgi, value, offset, mode);
2011                 store_value = result;
2012                 break;
2013         case EXPR_UNARY_PREFIX_DECREMENT:
2014                 result      = new_d_Sub(dbgi, value, offset, mode);
2015                 store_value = result;
2016                 break;
2017         default:
2018                 panic("no incdec expr in create_incdec");
2019         }
2020
2021         set_value_for_expression_addr(value_expr, store_value, addr);
2022
2023         return result;
2024 }
2025
2026 static bool is_local_variable(expression_t *expression)
2027 {
2028         if (expression->kind != EXPR_REFERENCE)
2029                 return false;
2030         reference_expression_t *ref_expr = &expression->reference;
2031         entity_t               *entity   = ref_expr->entity;
2032         if (entity->kind != ENTITY_VARIABLE)
2033                 return false;
2034         assert(entity->declaration.kind != DECLARATION_KIND_UNKNOWN);
2035         return entity->declaration.kind == DECLARATION_KIND_LOCAL_VARIABLE;
2036 }
2037
2038 static pn_Cmp get_pnc(const expression_kind_t kind, type_t *const type)
2039 {
2040         switch(kind) {
2041         case EXPR_BINARY_EQUAL:         return pn_Cmp_Eq;
2042         case EXPR_BINARY_ISLESSGREATER: return pn_Cmp_Lg;
2043         case EXPR_BINARY_NOTEQUAL:
2044                 return is_type_float(skip_typeref(type)) ? pn_Cmp_Ne : pn_Cmp_Lg;
2045         case EXPR_BINARY_ISLESS:
2046         case EXPR_BINARY_LESS:          return pn_Cmp_Lt;
2047         case EXPR_BINARY_ISLESSEQUAL:
2048         case EXPR_BINARY_LESSEQUAL:     return pn_Cmp_Le;
2049         case EXPR_BINARY_ISGREATER:
2050         case EXPR_BINARY_GREATER:       return pn_Cmp_Gt;
2051         case EXPR_BINARY_ISGREATEREQUAL:
2052         case EXPR_BINARY_GREATEREQUAL:  return pn_Cmp_Ge;
2053         case EXPR_BINARY_ISUNORDERED:   return pn_Cmp_Uo;
2054
2055         default:
2056                 break;
2057         }
2058         panic("trying to get pn_Cmp from non-comparison binexpr type");
2059 }
2060
2061 /**
2062  * Handle the assume optimizer hint: check if a Confirm
2063  * node can be created.
2064  *
2065  * @param dbi    debug info
2066  * @param expr   the IL assume expression
2067  *
2068  * we support here only some simple cases:
2069  *  - var rel const
2070  *  - const rel val
2071  *  - var rel var
2072  */
2073 static ir_node *handle_assume_compare(dbg_info *dbi,
2074                                       const binary_expression_t *expression)
2075 {
2076         expression_t *op1 = expression->left;
2077         expression_t *op2 = expression->right;
2078         entity_t     *var2, *var = NULL;
2079         ir_node      *res = NULL;
2080         pn_Cmp        cmp_val;
2081
2082         cmp_val = get_pnc(expression->base.kind, op1->base.type);
2083
2084         if (is_local_variable(op1) && is_local_variable(op2)) {
2085         var  = op1->reference.entity;
2086             var2 = op2->reference.entity;
2087
2088                 type_t  *const type = skip_typeref(var->declaration.type);
2089                 ir_mode *const mode = get_ir_mode(type);
2090
2091                 ir_node *const irn1 = get_value(var->variable.v.value_number, mode);
2092                 ir_node *const irn2 = get_value(var2->variable.v.value_number, mode);
2093
2094                 res = new_d_Confirm(dbi, irn2, irn1, get_inversed_pnc(cmp_val));
2095                 set_value(var2->variable.v.value_number, res);
2096
2097                 res = new_d_Confirm(dbi, irn1, irn2, cmp_val);
2098                 set_value(var->variable.v.value_number, res);
2099
2100                 return res;
2101         }
2102
2103         expression_t *con;
2104         if (is_local_variable(op1) && is_constant_expression(op2)) {
2105                 var = op1->reference.entity;
2106                 con = op2;
2107         } else if (is_constant_expression(op1) && is_local_variable(op2)) {
2108                 cmp_val = get_inversed_pnc(cmp_val);
2109                 var = op2->reference.entity;
2110                 con = op1;
2111         }
2112
2113         if (var != NULL) {
2114                 type_t  *const type = skip_typeref(var->declaration.type);
2115                 ir_mode *const mode = get_ir_mode(type);
2116
2117                 res = get_value(var->variable.v.value_number, mode);
2118                 res = new_d_Confirm(dbi, res, expression_to_firm(con), cmp_val);
2119                 set_value(var->variable.v.value_number, res);
2120         }
2121         return res;
2122 }
2123
2124 /**
2125  * Handle the assume optimizer hint.
2126  *
2127  * @param dbi    debug info
2128  * @param expr   the IL assume expression
2129  */
2130 static ir_node *handle_assume(dbg_info *dbi, const expression_t *expression) {
2131         switch(expression->kind) {
2132         case EXPR_BINARY_EQUAL:
2133         case EXPR_BINARY_NOTEQUAL:
2134         case EXPR_BINARY_LESS:
2135         case EXPR_BINARY_LESSEQUAL:
2136         case EXPR_BINARY_GREATER:
2137         case EXPR_BINARY_GREATEREQUAL:
2138                 return handle_assume_compare(dbi, &expression->binary);
2139         default:
2140                 return NULL;
2141         }
2142 }
2143
2144 static ir_node *unary_expression_to_firm(const unary_expression_t *expression)
2145 {
2146         dbg_info *dbgi = get_dbg_info(&expression->base.source_position);
2147         type_t   *type = skip_typeref(expression->base.type);
2148
2149         if (expression->base.kind == EXPR_UNARY_TAKE_ADDRESS)
2150                 return expression_to_addr(expression->value);
2151
2152         const expression_t *value = expression->value;
2153
2154         switch(expression->base.kind) {
2155         case EXPR_UNARY_NEGATE: {
2156                 ir_node *value_node = expression_to_firm(value);
2157                 ir_mode *mode = get_ir_mode(type);
2158                 return new_d_Minus(dbgi, value_node, mode);
2159         }
2160         case EXPR_UNARY_PLUS:
2161                 return expression_to_firm(value);
2162         case EXPR_UNARY_BITWISE_NEGATE: {
2163                 ir_node *value_node = expression_to_firm(value);
2164                 ir_mode *mode = get_ir_mode(type);
2165                 return new_d_Not(dbgi, value_node, mode);
2166         }
2167         case EXPR_UNARY_NOT: {
2168                 ir_node *value_node = _expression_to_firm(value);
2169                 value_node          = create_conv(dbgi, value_node, mode_b);
2170                 ir_node *res        = new_d_Not(dbgi, value_node, mode_b);
2171                 return res;
2172         }
2173         case EXPR_UNARY_DEREFERENCE: {
2174                 ir_node *value_node = expression_to_firm(value);
2175                 type_t  *value_type = skip_typeref(value->base.type);
2176                 assert(is_type_pointer(value_type));
2177                 type_t  *points_to  = value_type->pointer.points_to;
2178                 return deref_address(dbgi, points_to, value_node);
2179         }
2180         case EXPR_UNARY_POSTFIX_INCREMENT:
2181         case EXPR_UNARY_POSTFIX_DECREMENT:
2182         case EXPR_UNARY_PREFIX_INCREMENT:
2183         case EXPR_UNARY_PREFIX_DECREMENT:
2184                 return create_incdec(expression);
2185         case EXPR_UNARY_CAST: {
2186                 ir_node *value_node = expression_to_firm(value);
2187                 if (is_type_scalar(type)) {
2188                         ir_mode *mode = get_ir_mode(type);
2189                         ir_node *node = create_conv(dbgi, value_node, mode);
2190                         node = do_strict_conv(dbgi, node);
2191                         return node;
2192                 } else {
2193                         /* make sure firm type is constructed */
2194                         (void) get_ir_type(type);
2195                         return value_node;
2196                 }
2197         }
2198         case EXPR_UNARY_CAST_IMPLICIT: {
2199                 ir_node *value_node = expression_to_firm(value);
2200                 if (is_type_scalar(type)) {
2201                         ir_mode *mode = get_ir_mode(type);
2202                         return create_conv(dbgi, value_node, mode);
2203                 } else {
2204                         return value_node;
2205                 }
2206         }
2207         case EXPR_UNARY_ASSUME:
2208                 if (firm_opt.confirm)
2209                         return handle_assume(dbgi, value);
2210                 else
2211                         return NULL;
2212
2213         default:
2214                 break;
2215         }
2216         panic("invalid UNEXPR type found");
2217 }
2218
2219 /**
2220  * produces a 0/1 depending of the value of a mode_b node
2221  */
2222 static ir_node *produce_condition_result(const expression_t *expression,
2223                                          ir_mode *mode, dbg_info *dbgi)
2224 {
2225         ir_node *cur_block = get_cur_block();
2226
2227         ir_node *one_block = new_immBlock();
2228         set_cur_block(one_block);
2229         ir_node *one       = new_Const(get_mode_one(mode));
2230         ir_node *jmp_one   = new_d_Jmp(dbgi);
2231
2232         ir_node *zero_block = new_immBlock();
2233         set_cur_block(zero_block);
2234         ir_node *zero       = new_Const(get_mode_null(mode));
2235         ir_node *jmp_zero   = new_d_Jmp(dbgi);
2236
2237         set_cur_block(cur_block);
2238         create_condition_evaluation(expression, one_block, zero_block);
2239         mature_immBlock(one_block);
2240         mature_immBlock(zero_block);
2241
2242         ir_node *in_cf[2] = { jmp_one, jmp_zero };
2243         new_Block(2, in_cf);
2244
2245         ir_node *in[2] = { one, zero };
2246         ir_node *val   = new_d_Phi(dbgi, 2, in, mode);
2247
2248         return val;
2249 }
2250
2251 static ir_node *adjust_for_pointer_arithmetic(dbg_info *dbgi,
2252                 ir_node *value, type_t *type)
2253 {
2254         ir_mode        *const mode         = get_ir_mode(type_ptrdiff_t);
2255         assert(is_type_pointer(type));
2256         pointer_type_t *const pointer_type = &type->pointer;
2257         type_t         *const points_to    = skip_typeref(pointer_type->points_to);
2258         unsigned              elem_size    = get_type_size_const(points_to);
2259
2260         value = create_conv(dbgi, value, mode);
2261
2262         /* gcc extension: allow arithmetic with void * and function * */
2263         if ((elem_size == 0 && is_type_atomic(points_to, ATOMIC_TYPE_VOID)) ||
2264             is_type_function(points_to))  {
2265                 elem_size = 1;
2266         }
2267
2268         assert(elem_size >= 1);
2269         if (elem_size == 1)
2270                 return value;
2271
2272         ir_node *const cnst = new_Const_long(mode, (long)elem_size);
2273         ir_node *const mul  = new_d_Mul(dbgi, value, cnst, mode);
2274         return mul;
2275 }
2276
2277 static ir_node *create_op(dbg_info *dbgi, const binary_expression_t *expression,
2278                           ir_node *left, ir_node *right)
2279 {
2280         ir_mode  *mode;
2281         type_t   *type_left  = skip_typeref(expression->left->base.type);
2282         type_t   *type_right = skip_typeref(expression->right->base.type);
2283
2284         expression_kind_t kind = expression->base.kind;
2285
2286         switch (kind) {
2287         case EXPR_BINARY_SHIFTLEFT:
2288         case EXPR_BINARY_SHIFTRIGHT:
2289         case EXPR_BINARY_SHIFTLEFT_ASSIGN:
2290         case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
2291                 mode  = get_irn_mode(left);
2292                 right = create_conv(dbgi, right, mode_uint);
2293                 break;
2294
2295         case EXPR_BINARY_SUB:
2296                 if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
2297                         const pointer_type_t *const ptr_type = &type_left->pointer;
2298
2299                         mode = get_ir_mode(expression->base.type);
2300                         ir_node *const elem_size = get_type_size(ptr_type->points_to);
2301                         ir_node *const conv_size = new_d_Conv(dbgi, elem_size, mode);
2302                         ir_node *const sub       = new_d_Sub(dbgi, left, right, mode);
2303                         ir_node *const no_mem    = new_NoMem();
2304                         ir_node *const div       = new_d_DivRL(dbgi, no_mem, sub, conv_size,
2305                                                                                                    mode, op_pin_state_floats);
2306                         return new_d_Proj(dbgi, div, mode, pn_Div_res);
2307                 }
2308                 /* fallthrough */
2309         case EXPR_BINARY_SUB_ASSIGN:
2310                 if (is_type_pointer(type_left)) {
2311                         right = adjust_for_pointer_arithmetic(dbgi, right, type_left);
2312                         mode  = get_ir_mode(type_left);
2313                         break;
2314                 }
2315                 goto normal_node;
2316
2317         case EXPR_BINARY_ADD:
2318         case EXPR_BINARY_ADD_ASSIGN:
2319                 if (is_type_pointer(type_left)) {
2320                         right = adjust_for_pointer_arithmetic(dbgi, right, type_left);
2321                         mode  = get_ir_mode(type_left);
2322                         break;
2323                 } else if (is_type_pointer(type_right)) {
2324                         left  = adjust_for_pointer_arithmetic(dbgi, left, type_right);
2325                         mode  = get_ir_mode(type_right);
2326                         break;
2327                 }
2328                 goto normal_node;
2329
2330         default:
2331 normal_node:
2332                 mode = get_ir_mode(type_right);
2333                 left = create_conv(dbgi, left, mode);
2334                 break;
2335         }
2336
2337         switch (kind) {
2338         case EXPR_BINARY_ADD_ASSIGN:
2339         case EXPR_BINARY_ADD:
2340                 return new_d_Add(dbgi, left, right, mode);
2341         case EXPR_BINARY_SUB_ASSIGN:
2342         case EXPR_BINARY_SUB:
2343                 return new_d_Sub(dbgi, left, right, mode);
2344         case EXPR_BINARY_MUL_ASSIGN:
2345         case EXPR_BINARY_MUL:
2346                 return new_d_Mul(dbgi, left, right, mode);
2347         case EXPR_BINARY_BITWISE_AND:
2348         case EXPR_BINARY_BITWISE_AND_ASSIGN:
2349                 return new_d_And(dbgi, left, right, mode);
2350         case EXPR_BINARY_BITWISE_OR:
2351         case EXPR_BINARY_BITWISE_OR_ASSIGN:
2352                 return new_d_Or(dbgi, left, right, mode);
2353         case EXPR_BINARY_BITWISE_XOR:
2354         case EXPR_BINARY_BITWISE_XOR_ASSIGN:
2355                 return new_d_Eor(dbgi, left, right, mode);
2356         case EXPR_BINARY_SHIFTLEFT:
2357         case EXPR_BINARY_SHIFTLEFT_ASSIGN:
2358                 return new_d_Shl(dbgi, left, right, mode);
2359         case EXPR_BINARY_SHIFTRIGHT:
2360         case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
2361                 if (mode_is_signed(mode)) {
2362                         return new_d_Shrs(dbgi, left, right, mode);
2363                 } else {
2364                         return new_d_Shr(dbgi, left, right, mode);
2365                 }
2366         case EXPR_BINARY_DIV:
2367         case EXPR_BINARY_DIV_ASSIGN: {
2368                 ir_node *pin = new_Pin(new_NoMem());
2369                 ir_node *op;
2370                 ir_node *res;
2371                 if (mode_is_float(mode)) {
2372                         op  = new_d_Quot(dbgi, pin, left, right, mode, op_pin_state_floats);
2373                         res = new_d_Proj(dbgi, op, mode, pn_Quot_res);
2374                 } else {
2375                         op  = new_d_Div(dbgi, pin, left, right, mode, op_pin_state_floats);
2376                         res = new_d_Proj(dbgi, op, mode, pn_Div_res);
2377                 }
2378                 return res;
2379         }
2380         case EXPR_BINARY_MOD:
2381         case EXPR_BINARY_MOD_ASSIGN: {
2382                 ir_node *pin = new_Pin(new_NoMem());
2383                 assert(!mode_is_float(mode));
2384                 ir_node *op  = new_d_Mod(dbgi, pin, left, right, mode,
2385                                          op_pin_state_floats);
2386                 ir_node *res = new_d_Proj(dbgi, op, mode, pn_Mod_res);
2387                 return res;
2388         }
2389         default:
2390                 panic("unexpected expression kind");
2391         }
2392 }
2393
2394 static ir_node *create_lazy_op(const binary_expression_t *expression)
2395 {
2396         dbg_info *dbgi = get_dbg_info(&expression->base.source_position);
2397         type_t   *type = expression->base.type;
2398         ir_mode  *mode = get_ir_mode(type);
2399
2400         if (is_constant_expression(expression->left)) {
2401                 long val = fold_constant(expression->left);
2402                 expression_kind_t ekind = expression->base.kind;
2403                 assert(ekind == EXPR_BINARY_LOGICAL_AND || ekind == EXPR_BINARY_LOGICAL_OR);
2404                 if (ekind == EXPR_BINARY_LOGICAL_AND) {
2405                         if (val == 0) {
2406                                 return new_Const(get_mode_null(mode));
2407                         }
2408                 } else {
2409                         if (val != 0) {
2410                                 return new_Const(get_mode_one(mode));
2411                         }
2412                 }
2413
2414                 if (is_constant_expression(expression->right)) {
2415                         long const valr = fold_constant(expression->left);
2416                         return valr != 0 ?
2417                                 new_Const(get_mode_one(mode)) :
2418                                 new_Const(get_mode_null(mode));
2419                 }
2420
2421                 return produce_condition_result(expression->right, mode, dbgi);
2422         }
2423
2424         return produce_condition_result((const expression_t*) expression, mode,
2425                                         dbgi);
2426 }
2427
2428 typedef ir_node * (*create_arithmetic_func)(dbg_info *dbgi, ir_node *left,
2429                                             ir_node *right, ir_mode *mode);
2430
2431 static ir_node *create_assign_binop(const binary_expression_t *expression)
2432 {
2433         dbg_info *const     dbgi = get_dbg_info(&expression->base.source_position);
2434         const expression_t *left_expr = expression->left;
2435         ir_mode            *left_mode = get_ir_mode(left_expr->base.type);
2436         ir_node            *right     = expression_to_firm(expression->right);
2437         ir_node            *left_addr = expression_to_addr(left_expr);
2438         ir_node            *left      = get_value_from_lvalue(left_expr, left_addr);
2439         ir_node            *result    = create_op(dbgi, expression, left, right);
2440
2441         result = create_conv(dbgi, result, left_mode);
2442         result = do_strict_conv(dbgi, result);
2443
2444         set_value_for_expression_addr(left_expr, result, left_addr);
2445
2446         return result;
2447 }
2448
2449 static ir_node *binary_expression_to_firm(const binary_expression_t *expression)
2450 {
2451         expression_kind_t kind = expression->base.kind;
2452
2453         switch(kind) {
2454         case EXPR_BINARY_EQUAL:
2455         case EXPR_BINARY_NOTEQUAL:
2456         case EXPR_BINARY_LESS:
2457         case EXPR_BINARY_LESSEQUAL:
2458         case EXPR_BINARY_GREATER:
2459         case EXPR_BINARY_GREATEREQUAL:
2460         case EXPR_BINARY_ISGREATER:
2461         case EXPR_BINARY_ISGREATEREQUAL:
2462         case EXPR_BINARY_ISLESS:
2463         case EXPR_BINARY_ISLESSEQUAL:
2464         case EXPR_BINARY_ISLESSGREATER:
2465         case EXPR_BINARY_ISUNORDERED: {
2466                 dbg_info *dbgi = get_dbg_info(&expression->base.source_position);
2467                 ir_node *left  = expression_to_firm(expression->left);
2468                 ir_node *right = expression_to_firm(expression->right);
2469                 ir_node *cmp   = new_d_Cmp(dbgi, left, right);
2470                 long     pnc   = get_pnc(kind, expression->left->base.type);
2471                 ir_node *proj  = new_d_Proj(dbgi, cmp, mode_b, pnc);
2472                 return proj;
2473         }
2474         case EXPR_BINARY_ASSIGN: {
2475                 ir_node *addr  = expression_to_addr(expression->left);
2476                 ir_node *right = expression_to_firm(expression->right);
2477                 set_value_for_expression_addr(expression->left, right, addr);
2478
2479                 return right;
2480         }
2481         case EXPR_BINARY_ADD:
2482         case EXPR_BINARY_SUB:
2483         case EXPR_BINARY_MUL:
2484         case EXPR_BINARY_DIV:
2485         case EXPR_BINARY_MOD:
2486         case EXPR_BINARY_BITWISE_AND:
2487         case EXPR_BINARY_BITWISE_OR:
2488         case EXPR_BINARY_BITWISE_XOR:
2489         case EXPR_BINARY_SHIFTLEFT:
2490         case EXPR_BINARY_SHIFTRIGHT:
2491         {
2492                 dbg_info *dbgi  = get_dbg_info(&expression->base.source_position);
2493                 ir_node  *left  = expression_to_firm(expression->left);
2494                 ir_node  *right = expression_to_firm(expression->right);
2495                 return create_op(dbgi, expression, left, right);
2496         }
2497         case EXPR_BINARY_LOGICAL_AND:
2498         case EXPR_BINARY_LOGICAL_OR:
2499                 return create_lazy_op(expression);
2500         case EXPR_BINARY_COMMA:
2501                 /* create side effects of left side */
2502                 (void) expression_to_firm(expression->left);
2503                 return _expression_to_firm(expression->right);
2504
2505         case EXPR_BINARY_ADD_ASSIGN:
2506         case EXPR_BINARY_SUB_ASSIGN:
2507         case EXPR_BINARY_MUL_ASSIGN:
2508         case EXPR_BINARY_MOD_ASSIGN:
2509         case EXPR_BINARY_DIV_ASSIGN:
2510         case EXPR_BINARY_BITWISE_AND_ASSIGN:
2511         case EXPR_BINARY_BITWISE_OR_ASSIGN:
2512         case EXPR_BINARY_BITWISE_XOR_ASSIGN:
2513         case EXPR_BINARY_SHIFTLEFT_ASSIGN:
2514         case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
2515                 return create_assign_binop(expression);
2516         default:
2517                 panic("TODO binexpr type");
2518         }
2519 }
2520
2521 static ir_node *array_access_addr(const array_access_expression_t *expression)
2522 {
2523         dbg_info *dbgi        = get_dbg_info(&expression->base.source_position);
2524         ir_node  *base_addr   = expression_to_firm(expression->array_ref);
2525         ir_node  *offset      = expression_to_firm(expression->index);
2526         type_t   *ref_type    = skip_typeref(expression->array_ref->base.type);
2527         ir_node  *real_offset = adjust_for_pointer_arithmetic(dbgi, offset, ref_type);
2528         ir_node  *result      = new_d_Add(dbgi, base_addr, real_offset, mode_P_data);
2529
2530         return result;
2531 }
2532
2533 static ir_node *array_access_to_firm(
2534                 const array_access_expression_t *expression)
2535 {
2536         dbg_info *dbgi   = get_dbg_info(&expression->base.source_position);
2537         ir_node  *addr   = array_access_addr(expression);
2538         type_t   *type   = revert_automatic_type_conversion(
2539                         (const expression_t*) expression);
2540         type             = skip_typeref(type);
2541
2542         return deref_address(dbgi, type, addr);
2543 }
2544
2545 static long get_offsetof_offset(const offsetof_expression_t *expression)
2546 {
2547         type_t *orig_type = expression->type;
2548         long    offset    = 0;
2549
2550         designator_t *designator = expression->designator;
2551         for ( ; designator != NULL; designator = designator->next) {
2552                 type_t *type = skip_typeref(orig_type);
2553                 /* be sure the type is constructed */
2554                 (void) get_ir_type(type);
2555
2556                 if (designator->symbol != NULL) {
2557                         assert(is_type_compound(type));
2558                         symbol_t *symbol = designator->symbol;
2559
2560                         compound_t *compound = type->compound.compound;
2561                         entity_t   *iter     = compound->members.entities;
2562                         for ( ; iter != NULL; iter = iter->base.next) {
2563                                 if (iter->base.symbol == symbol) {
2564                                         break;
2565                                 }
2566                         }
2567                         assert(iter != NULL);
2568
2569                         assert(iter->kind == ENTITY_COMPOUND_MEMBER);
2570                         assert(iter->declaration.kind == DECLARATION_KIND_COMPOUND_MEMBER);
2571                         offset += get_entity_offset(iter->compound_member.entity);
2572
2573                         orig_type = iter->declaration.type;
2574                 } else {
2575                         expression_t *array_index = designator->array_index;
2576                         assert(designator->array_index != NULL);
2577                         assert(is_type_array(type));
2578
2579                         long index         = fold_constant(array_index);
2580                         ir_type *arr_type  = get_ir_type(type);
2581                         ir_type *elem_type = get_array_element_type(arr_type);
2582                         long     elem_size = get_type_size_bytes(elem_type);
2583
2584                         offset += index * elem_size;
2585
2586                         orig_type = type->array.element_type;
2587                 }
2588         }
2589
2590         return offset;
2591 }
2592
2593 static ir_node *offsetof_to_firm(const offsetof_expression_t *expression)
2594 {
2595         ir_mode  *mode   = get_ir_mode(expression->base.type);
2596         long      offset = get_offsetof_offset(expression);
2597         tarval   *tv     = new_tarval_from_long(offset, mode);
2598         dbg_info *dbgi   = get_dbg_info(&expression->base.source_position);
2599
2600         return new_d_Const(dbgi, tv);
2601 }
2602
2603 static void create_local_initializer(initializer_t *initializer, dbg_info *dbgi,
2604                                      ir_entity *entity, type_t *type);
2605
2606 static ir_node *compound_literal_to_firm(
2607                 const compound_literal_expression_t *expression)
2608 {
2609         type_t *type = expression->type;
2610
2611         /* create an entity on the stack */
2612         ir_type *frame_type = get_irg_frame_type(current_ir_graph);
2613
2614         ident     *const id     = id_unique("CompLit.%u");
2615         ir_type   *const irtype = get_ir_type(type);
2616         dbg_info  *const dbgi   = get_dbg_info(&expression->base.source_position);
2617         ir_entity *const entity = new_d_entity(frame_type, id, irtype, dbgi);
2618         set_entity_ld_ident(entity, id);
2619
2620         set_entity_variability(entity, variability_uninitialized);
2621
2622         /* create initialisation code */
2623         initializer_t *initializer = expression->initializer;
2624         create_local_initializer(initializer, dbgi, entity, type);
2625
2626         /* create a sel for the compound literal address */
2627         ir_node *frame = get_local_frame(entity);
2628         ir_node *sel   = new_d_simpleSel(dbgi, new_NoMem(), frame, entity);
2629         return sel;
2630 }
2631
2632 /**
2633  * Transform a sizeof expression into Firm code.
2634  */
2635 static ir_node *sizeof_to_firm(const typeprop_expression_t *expression)
2636 {
2637         type_t *type = expression->type;
2638         if (type == NULL) {
2639                 type = expression->tp_expression->base.type;
2640                 assert(type != NULL);
2641         }
2642
2643         type = skip_typeref(type);
2644         /* ยง 6.5.3.4 (2) if the type is a VLA, evaluate the expression. */
2645         if (is_type_array(type) && type->array.is_vla
2646                         && expression->tp_expression != NULL) {
2647                 expression_to_firm(expression->tp_expression);
2648         }
2649
2650         return get_type_size(type);
2651 }
2652
2653 /**
2654  * Transform an alignof expression into Firm code.
2655  */
2656 static ir_node *alignof_to_firm(const typeprop_expression_t *expression)
2657 {
2658         type_t *type = expression->type;
2659         if (type == NULL) {
2660                 /* beware: if expression is a variable reference, return the
2661                    alignment of the variable. */
2662                 const expression_t *tp_expression = expression->tp_expression;
2663                 const entity_t     *entity        = expression_is_variable(tp_expression);
2664                 if (entity != NULL) {
2665                         /* TODO: get the alignment of this variable. */
2666                         (void) entity;
2667                 }
2668                 type = tp_expression->base.type;
2669                 assert(type != NULL);
2670         }
2671
2672         ir_mode *const mode = get_ir_mode(expression->base.type);
2673         symconst_symbol sym;
2674         sym.type_p = get_ir_type(type);
2675         return new_SymConst(mode, sym, symconst_type_align);
2676 }
2677
2678 static void init_ir_types(void);
2679
2680 long fold_constant(const expression_t *expression)
2681 {
2682         assert(is_type_valid(skip_typeref(expression->base.type)));
2683
2684         bool constant_folding_old = constant_folding;
2685         constant_folding = true;
2686
2687         init_ir_types();
2688
2689         assert(is_constant_expression(expression));
2690
2691         ir_graph *old_current_ir_graph = current_ir_graph;
2692         if (current_ir_graph == NULL) {
2693                 current_ir_graph = get_const_code_irg();
2694         }
2695
2696         ir_node *cnst = expression_to_firm(expression);
2697         current_ir_graph = old_current_ir_graph;
2698
2699         if (!is_Const(cnst)) {
2700                 panic("couldn't fold constant");
2701         }
2702
2703         tarval *tv = get_Const_tarval(cnst);
2704         if (!tarval_is_long(tv)) {
2705                 panic("result of constant folding is not integer");
2706         }
2707
2708         constant_folding = constant_folding_old;
2709
2710         return get_tarval_long(tv);
2711 }
2712
2713 static ir_node *conditional_to_firm(const conditional_expression_t *expression)
2714 {
2715         dbg_info *const dbgi = get_dbg_info(&expression->base.source_position);
2716
2717         /* first try to fold a constant condition */
2718         if (is_constant_expression(expression->condition)) {
2719                 long val = fold_constant(expression->condition);
2720                 if (val) {
2721                         expression_t *true_expression = expression->true_expression;
2722                         if (true_expression == NULL)
2723                                 true_expression = expression->condition;
2724                         return expression_to_firm(true_expression);
2725                 } else {
2726                         return expression_to_firm(expression->false_expression);
2727                 }
2728         }
2729
2730         ir_node *cur_block   = get_cur_block();
2731
2732         /* create the true block */
2733         ir_node *true_block  = new_immBlock();
2734         set_cur_block(true_block);
2735
2736         ir_node *true_val = expression->true_expression != NULL ?
2737                 expression_to_firm(expression->true_expression) : NULL;
2738         ir_node *true_jmp = new_Jmp();
2739
2740         /* create the false block */
2741         ir_node *false_block = new_immBlock();
2742         set_cur_block(false_block);
2743
2744         ir_node *false_val = expression_to_firm(expression->false_expression);
2745         ir_node *false_jmp = new_Jmp();
2746
2747         /* create the condition evaluation */
2748         set_cur_block(cur_block);
2749         ir_node *const cond_expr = create_condition_evaluation(expression->condition, true_block, false_block);
2750         if (expression->true_expression == NULL) {
2751                 if (cond_expr != NULL) {
2752                         true_val = cond_expr;
2753                 } else {
2754                         /* Condition ended with a short circuit (&&, ||, !) operation.
2755                          * Generate a "1" as value for the true branch. */
2756                         true_val = new_Const(get_mode_one(mode_Is));
2757                 }
2758         }
2759         mature_immBlock(true_block);
2760         mature_immBlock(false_block);
2761
2762         /* create the common block */
2763         ir_node *in_cf[2] = { true_jmp, false_jmp };
2764         new_Block(2, in_cf);
2765
2766         /* TODO improve static semantics, so either both or no values are NULL */
2767         if (true_val == NULL || false_val == NULL)
2768                 return NULL;
2769
2770         ir_node *in[2] = { true_val, false_val };
2771         ir_mode *mode  = get_irn_mode(true_val);
2772         assert(get_irn_mode(false_val) == mode);
2773         ir_node *val   = new_d_Phi(dbgi, 2, in, mode);
2774
2775         return val;
2776 }
2777
2778 /**
2779  * Returns an IR-node representing the address of a field.
2780  */
2781 static ir_node *select_addr(const select_expression_t *expression)
2782 {
2783         dbg_info *dbgi = get_dbg_info(&expression->base.source_position);
2784
2785         construct_select_compound(expression);
2786
2787         ir_node *compound_addr = expression_to_firm(expression->compound);
2788
2789         entity_t *entry = expression->compound_entry;
2790         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
2791         assert(entry->declaration.kind == DECLARATION_KIND_COMPOUND_MEMBER);
2792
2793         if (constant_folding) {
2794                 ir_mode *mode = get_irn_mode(compound_addr);
2795                 /* FIXME: here, we need an integer mode with the same number of bits as mode */
2796                 ir_node *ofs  = new_Const_long(mode_uint, entry->compound_member.offset);
2797                 return new_d_Add(dbgi, compound_addr, ofs, mode);
2798         } else {
2799                 ir_entity *irentity = entry->compound_member.entity;
2800                 assert(irentity != NULL);
2801                 return new_d_simpleSel(dbgi, new_NoMem(), compound_addr, irentity);
2802         }
2803 }
2804
2805 static ir_node *select_to_firm(const select_expression_t *expression)
2806 {
2807         dbg_info *dbgi = get_dbg_info(&expression->base.source_position);
2808         ir_node  *addr = select_addr(expression);
2809         type_t   *type = revert_automatic_type_conversion(
2810                         (const expression_t*) expression);
2811         type           = skip_typeref(type);
2812
2813         entity_t *entry      = expression->compound_entry;
2814         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
2815         type_t   *entry_type = skip_typeref(entry->declaration.type);
2816
2817         if (entry_type->kind == TYPE_BITFIELD) {
2818                 return bitfield_extract_to_firm(expression, addr);
2819         }
2820
2821         return deref_address(dbgi, type, addr);
2822 }
2823
2824 /* Values returned by __builtin_classify_type. */
2825 typedef enum gcc_type_class
2826 {
2827         no_type_class = -1,
2828         void_type_class,
2829         integer_type_class,
2830         char_type_class,
2831         enumeral_type_class,
2832         boolean_type_class,
2833         pointer_type_class,
2834         reference_type_class,
2835         offset_type_class,
2836         real_type_class,
2837         complex_type_class,
2838         function_type_class,
2839         method_type_class,
2840         record_type_class,
2841         union_type_class,
2842         array_type_class,
2843         string_type_class,
2844         set_type_class,
2845         file_type_class,
2846         lang_type_class
2847 } gcc_type_class;
2848
2849 static ir_node *classify_type_to_firm(const classify_type_expression_t *const expr)
2850 {
2851         type_t *type = expr->type_expression->base.type;
2852
2853         /* FIXME gcc returns different values depending on whether compiling C or C++
2854          * e.g. int x[10] is pointer_type_class in C, but array_type_class in C++ */
2855         gcc_type_class tc;
2856         for (;;) {
2857                 type = skip_typeref(type);
2858                 switch (type->kind) {
2859                         case TYPE_ATOMIC: {
2860                                 const atomic_type_t *const atomic_type = &type->atomic;
2861                                 switch (atomic_type->akind) {
2862                                         /* should not be reached */
2863                                         case ATOMIC_TYPE_INVALID:
2864                                                 tc = no_type_class;
2865                                                 goto make_const;
2866
2867                                         /* gcc cannot do that */
2868                                         case ATOMIC_TYPE_VOID:
2869                                                 tc = void_type_class;
2870                                                 goto make_const;
2871
2872                                         case ATOMIC_TYPE_WCHAR_T:   /* gcc handles this as integer */
2873                                         case ATOMIC_TYPE_CHAR:      /* gcc handles this as integer */
2874                                         case ATOMIC_TYPE_SCHAR:     /* gcc handles this as integer */
2875                                         case ATOMIC_TYPE_UCHAR:     /* gcc handles this as integer */
2876                                         case ATOMIC_TYPE_SHORT:
2877                                         case ATOMIC_TYPE_USHORT:
2878                                         case ATOMIC_TYPE_INT:
2879                                         case ATOMIC_TYPE_UINT:
2880                                         case ATOMIC_TYPE_LONG:
2881                                         case ATOMIC_TYPE_ULONG:
2882                                         case ATOMIC_TYPE_LONGLONG:
2883                                         case ATOMIC_TYPE_ULONGLONG:
2884                                         case ATOMIC_TYPE_BOOL:      /* gcc handles this as integer */
2885                                                 tc = integer_type_class;
2886                                                 goto make_const;
2887
2888                                         case ATOMIC_TYPE_FLOAT:
2889                                         case ATOMIC_TYPE_DOUBLE:
2890                                         case ATOMIC_TYPE_LONG_DOUBLE:
2891                                                 tc = real_type_class;
2892                                                 goto make_const;
2893                                 }
2894                                 panic("Unexpected atomic type in classify_type_to_firm().");
2895                         }
2896
2897                         case TYPE_COMPLEX:         tc = complex_type_class; goto make_const;
2898                         case TYPE_IMAGINARY:       tc = complex_type_class; goto make_const;
2899                         case TYPE_BITFIELD:        tc = integer_type_class; goto make_const;
2900                         case TYPE_ARRAY:           /* gcc handles this as pointer */
2901                         case TYPE_FUNCTION:        /* gcc handles this as pointer */
2902                         case TYPE_POINTER:         tc = pointer_type_class; goto make_const;
2903                         case TYPE_COMPOUND_STRUCT: tc = record_type_class;  goto make_const;
2904                         case TYPE_COMPOUND_UNION:  tc = union_type_class;   goto make_const;
2905
2906                         /* gcc handles this as integer */
2907                         case TYPE_ENUM:            tc = integer_type_class; goto make_const;
2908
2909                         /* gcc classifies the referenced type */
2910                         case TYPE_REFERENCE: type = type->reference.refers_to; continue;
2911
2912                         case TYPE_BUILTIN:
2913                         /* typedef/typeof should be skipped already */
2914                         case TYPE_TYPEDEF:
2915                         case TYPE_TYPEOF:
2916                         case TYPE_INVALID:
2917                         case TYPE_ERROR:
2918                                 break;
2919                 }
2920                 panic("unexpected TYPE classify_type_to_firm().");
2921         }
2922
2923 make_const:;
2924         dbg_info *const dbgi = get_dbg_info(&expr->base.source_position);
2925         tarval   *const tv   = new_tarval_from_long(tc, mode_int);
2926         return new_d_Const(dbgi, tv);
2927 }
2928
2929 static ir_node *function_name_to_firm(
2930                 const funcname_expression_t *const expr)
2931 {
2932         switch(expr->kind) {
2933         case FUNCNAME_FUNCTION:
2934         case FUNCNAME_PRETTY_FUNCTION:
2935         case FUNCNAME_FUNCDNAME:
2936                 if (current_function_name == NULL) {
2937                         const source_position_t *const src_pos = &expr->base.source_position;
2938                         const char    *name  = current_function_entity->base.symbol->string;
2939                         const string_t string = { name, strlen(name) + 1 };
2940                         current_function_name = string_to_firm(src_pos, "__func__.%u", &string);
2941                 }
2942                 return current_function_name;
2943         case FUNCNAME_FUNCSIG:
2944                 if (current_funcsig == NULL) {
2945                         const source_position_t *const src_pos = &expr->base.source_position;
2946                         ir_entity *ent = get_irg_entity(current_ir_graph);
2947                         const char *const name = get_entity_ld_name(ent);
2948                         const string_t string = { name, strlen(name) + 1 };
2949                         current_funcsig = string_to_firm(src_pos, "__FUNCSIG__.%u", &string);
2950                 }
2951                 return current_funcsig;
2952         }
2953         panic("Unsupported function name");
2954 }
2955
2956 static ir_node *statement_expression_to_firm(const statement_expression_t *expr)
2957 {
2958         statement_t *statement = expr->statement;
2959
2960         assert(statement->kind == STATEMENT_COMPOUND);
2961         return compound_statement_to_firm(&statement->compound);
2962 }
2963
2964 static ir_node *va_start_expression_to_firm(
2965         const va_start_expression_t *const expr)
2966 {
2967         type_t    *const type        = current_function_entity->declaration.type;
2968         ir_type   *const method_type = get_ir_type(type);
2969         int        const n           = get_method_n_params(method_type) - 1;
2970         ir_entity *const parm_ent    = get_method_value_param_ent(method_type, n);
2971         ir_node   *const arg_base    = get_irg_value_param_base(current_ir_graph);
2972         dbg_info  *const dbgi        = get_dbg_info(&expr->base.source_position);
2973         ir_node   *const no_mem      = new_NoMem();
2974         ir_node   *const arg_sel     =
2975                 new_d_simpleSel(dbgi, no_mem, arg_base, parm_ent);
2976
2977         ir_node   *const cnst        = get_type_size(expr->parameter->base.type);
2978         ir_node   *const add         = new_d_Add(dbgi, arg_sel, cnst, mode_P_data);
2979         set_value_for_expression(expr->ap, add);
2980
2981         return NULL;
2982 }
2983
2984 static ir_node *va_arg_expression_to_firm(const va_arg_expression_t *const expr)
2985 {
2986         type_t       *const type    = expr->base.type;
2987         expression_t *const ap_expr = expr->ap;
2988         ir_node      *const ap_addr = expression_to_addr(ap_expr);
2989         ir_node      *const ap      = get_value_from_lvalue(ap_expr, ap_addr);
2990         dbg_info     *const dbgi    = get_dbg_info(&expr->base.source_position);
2991         ir_node      *const res     = deref_address(dbgi, type, ap);
2992
2993         ir_node      *const cnst    = get_type_size(expr->base.type);
2994         ir_node      *const add     = new_d_Add(dbgi, ap, cnst, mode_P_data);
2995
2996         set_value_for_expression_addr(ap_expr, add, ap_addr);
2997
2998         return res;
2999 }
3000
3001 static ir_node *dereference_addr(const unary_expression_t *const expression)
3002 {
3003         assert(expression->base.kind == EXPR_UNARY_DEREFERENCE);
3004         return expression_to_firm(expression->value);
3005 }
3006
3007 /**
3008  * Returns a IR-node representing an lvalue of the given expression.
3009  */
3010 static ir_node *expression_to_addr(const expression_t *expression)
3011 {
3012         switch(expression->kind) {
3013         case EXPR_ARRAY_ACCESS:
3014                 return array_access_addr(&expression->array_access);
3015         case EXPR_CALL:
3016                 return call_expression_to_firm(&expression->call);
3017         case EXPR_COMPOUND_LITERAL:
3018                 return compound_literal_to_firm(&expression->compound_literal);
3019         case EXPR_REFERENCE:
3020                 return reference_addr(&expression->reference);
3021         case EXPR_SELECT:
3022                 return select_addr(&expression->select);
3023         case EXPR_UNARY_DEREFERENCE:
3024                 return dereference_addr(&expression->unary);
3025         default:
3026                 break;
3027         }
3028         panic("trying to get address of non-lvalue");
3029 }
3030
3031 static ir_node *builtin_constant_to_firm(
3032                 const builtin_constant_expression_t *expression)
3033 {
3034         ir_mode *mode = get_ir_mode(expression->base.type);
3035         long     v;
3036
3037         if (is_constant_expression(expression->value)) {
3038                 v = 1;
3039         } else {
3040                 v = 0;
3041         }
3042         return new_Const_long(mode, v);
3043 }
3044
3045 static ir_node *builtin_prefetch_to_firm(
3046                 const builtin_prefetch_expression_t *expression)
3047 {
3048         ir_node *adr = expression_to_firm(expression->adr);
3049         /* no Firm support for prefetch yet */
3050         (void) adr;
3051         return NULL;
3052 }
3053
3054 static ir_node *get_label_block(label_t *label)
3055 {
3056         if (label->block != NULL)
3057                 return label->block;
3058
3059         /* beware: might be called from create initializer with current_ir_graph
3060          * set to const_code_irg. */
3061         ir_graph *rem    = current_ir_graph;
3062         current_ir_graph = current_function;
3063
3064         ir_node *block = new_immBlock();
3065
3066         label->block = block;
3067
3068         ARR_APP1(label_t *, all_labels, label);
3069
3070         current_ir_graph = rem;
3071         return block;
3072 }
3073
3074 /**
3075  * Pointer to a label.  This is used for the
3076  * GNU address-of-label extension.
3077  */
3078 static ir_node *label_address_to_firm(
3079                 const label_address_expression_t *label)
3080 {
3081         ir_node    *block = get_label_block(label->label);
3082         ir_label_t  nr    = get_Block_label(block);
3083
3084         if (nr == 0) {
3085                 nr = get_irp_next_label_nr();
3086                 set_Block_label(block, nr);
3087         }
3088         symconst_symbol value;
3089         value.label = nr;
3090         return new_SymConst(mode_P_code, value, symconst_label);
3091 }
3092
3093 static ir_node *builtin_symbol_to_firm(
3094                 const builtin_symbol_expression_t *expression)
3095 {
3096         /* for gcc compatibility we have to produce (dummy) addresses for some
3097          * builtins */
3098         if (warning.other) {
3099                 warningf(&expression->base.source_position,
3100                                  "taking address of builtin '%Y'", expression->symbol);
3101         }
3102
3103         /* simply create a NULL pointer */
3104         ir_mode  *mode = get_ir_mode(type_void_ptr);
3105         ir_node  *res  = new_Const_long(mode, 0);
3106
3107         return res;
3108 }
3109
3110 /**
3111  * creates firm nodes for an expression. The difference between this function
3112  * and expression_to_firm is, that this version might produce mode_b nodes
3113  * instead of mode_Is.
3114  */
3115 static ir_node *_expression_to_firm(const expression_t *expression)
3116 {
3117 #ifndef NDEBUG
3118         if (!constant_folding) {
3119                 assert(!expression->base.transformed);
3120                 ((expression_t*) expression)->base.transformed = true;
3121         }
3122 #endif
3123
3124         switch (expression->kind) {
3125         case EXPR_CHARACTER_CONSTANT:
3126                 return character_constant_to_firm(&expression->conste);
3127         case EXPR_WIDE_CHARACTER_CONSTANT:
3128                 return wide_character_constant_to_firm(&expression->conste);
3129         case EXPR_CONST:
3130                 return const_to_firm(&expression->conste);
3131         case EXPR_STRING_LITERAL:
3132                 return string_literal_to_firm(&expression->string);
3133         case EXPR_WIDE_STRING_LITERAL:
3134                 return wide_string_literal_to_firm(&expression->wide_string);
3135         case EXPR_REFERENCE:
3136                 return reference_expression_to_firm(&expression->reference);
3137         case EXPR_REFERENCE_ENUM_VALUE:
3138                 return reference_expression_enum_value_to_firm(&expression->reference);
3139         case EXPR_CALL:
3140                 return call_expression_to_firm(&expression->call);
3141         EXPR_UNARY_CASES
3142                 return unary_expression_to_firm(&expression->unary);
3143         EXPR_BINARY_CASES
3144                 return binary_expression_to_firm(&expression->binary);
3145         case EXPR_ARRAY_ACCESS:
3146                 return array_access_to_firm(&expression->array_access);
3147         case EXPR_SIZEOF:
3148                 return sizeof_to_firm(&expression->typeprop);
3149         case EXPR_ALIGNOF:
3150                 return alignof_to_firm(&expression->typeprop);
3151         case EXPR_CONDITIONAL:
3152                 return conditional_to_firm(&expression->conditional);
3153         case EXPR_SELECT:
3154                 return select_to_firm(&expression->select);
3155         case EXPR_CLASSIFY_TYPE:
3156                 return classify_type_to_firm(&expression->classify_type);
3157         case EXPR_FUNCNAME:
3158                 return function_name_to_firm(&expression->funcname);
3159         case EXPR_STATEMENT:
3160                 return statement_expression_to_firm(&expression->statement);
3161         case EXPR_VA_START:
3162                 return va_start_expression_to_firm(&expression->va_starte);
3163         case EXPR_VA_ARG:
3164                 return va_arg_expression_to_firm(&expression->va_arge);
3165         case EXPR_BUILTIN_SYMBOL:
3166                 return builtin_symbol_to_firm(&expression->builtin_symbol);
3167         case EXPR_BUILTIN_CONSTANT_P:
3168                 return builtin_constant_to_firm(&expression->builtin_constant);
3169         case EXPR_BUILTIN_PREFETCH:
3170                 return builtin_prefetch_to_firm(&expression->builtin_prefetch);
3171         case EXPR_OFFSETOF:
3172                 return offsetof_to_firm(&expression->offsetofe);
3173         case EXPR_COMPOUND_LITERAL:
3174                 return compound_literal_to_firm(&expression->compound_literal);
3175         case EXPR_LABEL_ADDRESS:
3176                 return label_address_to_firm(&expression->label_address);
3177
3178         case EXPR_UNKNOWN:
3179         case EXPR_INVALID:
3180                 break;
3181         }
3182         panic("invalid expression found");
3183 }
3184
3185 static bool is_builtin_expect(const expression_t *expression)
3186 {
3187         if (expression->kind != EXPR_CALL)
3188                 return false;
3189
3190         expression_t *function = expression->call.function;
3191         if (function->kind != EXPR_BUILTIN_SYMBOL)
3192                 return false;
3193         if (function->builtin_symbol.symbol->ID != T___builtin_expect)
3194                 return false;
3195
3196         return true;
3197 }
3198
3199 static bool produces_mode_b(const expression_t *expression)
3200 {
3201         switch (expression->kind) {
3202         case EXPR_BINARY_EQUAL:
3203         case EXPR_BINARY_NOTEQUAL:
3204         case EXPR_BINARY_LESS:
3205         case EXPR_BINARY_LESSEQUAL:
3206         case EXPR_BINARY_GREATER:
3207         case EXPR_BINARY_GREATEREQUAL:
3208         case EXPR_BINARY_ISGREATER:
3209         case EXPR_BINARY_ISGREATEREQUAL:
3210         case EXPR_BINARY_ISLESS:
3211         case EXPR_BINARY_ISLESSEQUAL:
3212         case EXPR_BINARY_ISLESSGREATER:
3213         case EXPR_BINARY_ISUNORDERED:
3214         case EXPR_UNARY_NOT:
3215                 return true;
3216
3217         case EXPR_CALL:
3218                 if (is_builtin_expect(expression)) {
3219                         expression_t *argument = expression->call.arguments->expression;
3220                         return produces_mode_b(argument);
3221                 }
3222                 return false;
3223         case EXPR_BINARY_COMMA:
3224                 return produces_mode_b(expression->binary.right);
3225
3226         default:
3227                 return false;
3228         }
3229 }
3230
3231 static ir_node *expression_to_firm(const expression_t *expression)
3232 {
3233         if (!produces_mode_b(expression)) {
3234                 ir_node *res = _expression_to_firm(expression);
3235                 assert(res == NULL || get_irn_mode(res) != mode_b);
3236                 return res;
3237         }
3238
3239         if (is_constant_expression(expression)) {
3240                 ir_node *res  = _expression_to_firm(expression);
3241                 ir_mode *mode = get_ir_mode(expression->base.type);
3242                 assert(is_Const(res));
3243                 if (is_Const_null(res)) {
3244                         return new_Const_long(mode, 0);
3245                 } else {
3246                         return new_Const_long(mode, 1);
3247                 }
3248         }
3249
3250         /* we have to produce a 0/1 from the mode_b expression */
3251         dbg_info *dbgi = get_dbg_info(&expression->base.source_position);
3252         ir_mode  *mode = get_ir_mode(expression->base.type);
3253         return produce_condition_result(expression, mode, dbgi);
3254 }
3255
3256 /**
3257  * create a short-circuit expression evaluation that tries to construct
3258  * efficient control flow structures for &&, || and ! expressions
3259  */
3260 static ir_node *create_condition_evaluation(const expression_t *expression,
3261                                             ir_node *true_block,
3262                                             ir_node *false_block)
3263 {
3264         switch(expression->kind) {
3265         case EXPR_UNARY_NOT: {
3266                 const unary_expression_t *unary_expression = &expression->unary;
3267                 create_condition_evaluation(unary_expression->value, false_block,
3268                                             true_block);
3269                 return NULL;
3270         }
3271         case EXPR_BINARY_LOGICAL_AND: {
3272                 const binary_expression_t *binary_expression = &expression->binary;
3273
3274                 ir_node *extra_block = new_immBlock();
3275                 create_condition_evaluation(binary_expression->left, extra_block,
3276                                             false_block);
3277                 mature_immBlock(extra_block);
3278                 set_cur_block(extra_block);
3279                 create_condition_evaluation(binary_expression->right, true_block,
3280                                             false_block);
3281                 return NULL;
3282         }
3283         case EXPR_BINARY_LOGICAL_OR: {
3284                 const binary_expression_t *binary_expression = &expression->binary;
3285
3286                 ir_node *extra_block = new_immBlock();
3287                 create_condition_evaluation(binary_expression->left, true_block,
3288                                             extra_block);
3289                 mature_immBlock(extra_block);
3290                 set_cur_block(extra_block);
3291                 create_condition_evaluation(binary_expression->right, true_block,
3292                                             false_block);
3293                 return NULL;
3294         }
3295         default:
3296                 break;
3297         }
3298
3299         dbg_info *dbgi       = get_dbg_info(&expression->base.source_position);
3300         ir_node  *cond_expr  = _expression_to_firm(expression);
3301         ir_node  *condition  = create_conv(dbgi, cond_expr, mode_b);
3302         ir_node  *cond       = new_d_Cond(dbgi, condition);
3303         ir_node  *true_proj  = new_d_Proj(dbgi, cond, mode_X, pn_Cond_true);
3304         ir_node  *false_proj = new_d_Proj(dbgi, cond, mode_X, pn_Cond_false);
3305
3306         /* set branch prediction info based on __builtin_expect */
3307         if (is_builtin_expect(expression)) {
3308                 call_argument_t *argument = expression->call.arguments->next;
3309                 if (is_constant_expression(argument->expression)) {
3310                         long               cnst = fold_constant(argument->expression);
3311                         cond_jmp_predicate pred;
3312
3313                         if (cnst == 0) {
3314                                 pred = COND_JMP_PRED_FALSE;
3315                         } else {
3316                                 pred = COND_JMP_PRED_TRUE;
3317                         }
3318                         set_Cond_jmp_pred(cond, pred);
3319                 }
3320         }
3321
3322         add_immBlock_pred(true_block, true_proj);
3323         add_immBlock_pred(false_block, false_proj);
3324
3325         set_cur_block(NULL);
3326         return cond_expr;
3327 }
3328
3329
3330 static void create_variable_entity(entity_t *variable,
3331                                    declaration_kind_t declaration_kind,
3332                                    ir_type *parent_type)
3333 {
3334         assert(variable->kind == ENTITY_VARIABLE);
3335         type_t    *const type     = skip_typeref(variable->declaration.type);
3336         ident     *const id       = new_id_from_str(variable->base.symbol->string);
3337         ir_type   *const irtype   = get_ir_type(type);
3338         dbg_info  *const dbgi     = get_dbg_info(&variable->base.source_position);
3339         ir_entity *const irentity = new_d_entity(parent_type, id, irtype, dbgi);
3340
3341         handle_gnu_attributes_ent(irentity, variable);
3342
3343         variable->declaration.kind  = (unsigned char) declaration_kind;
3344         variable->variable.v.entity = irentity;
3345         set_entity_variability(irentity, variability_uninitialized);
3346         set_entity_ld_ident(irentity, create_ld_ident(variable));
3347         if (parent_type == get_tls_type())
3348                 set_entity_allocation(irentity, allocation_automatic);
3349         else if (declaration_kind == DECLARATION_KIND_GLOBAL_VARIABLE)
3350                 set_entity_allocation(irentity, allocation_static);
3351
3352         if (type->base.qualifiers & TYPE_QUALIFIER_VOLATILE) {
3353                 set_entity_volatility(irentity, volatility_is_volatile);
3354         }
3355 }
3356
3357
3358 typedef struct type_path_entry_t type_path_entry_t;
3359 struct type_path_entry_t {
3360         type_t           *type;
3361         ir_initializer_t *initializer;
3362         size_t            index;
3363         entity_t         *compound_entry;
3364 };
3365
3366 typedef struct type_path_t type_path_t;
3367 struct type_path_t {
3368         type_path_entry_t *path;
3369         type_t            *top_type;
3370         bool               invalid;
3371 };
3372
3373 static __attribute__((unused)) void debug_print_type_path(const type_path_t *path)
3374 {
3375         size_t len = ARR_LEN(path->path);
3376
3377         for (size_t i = 0; i < len; ++i) {
3378                 const type_path_entry_t *entry = & path->path[i];
3379
3380                 type_t *type = skip_typeref(entry->type);
3381                 if (is_type_compound(type)) {
3382                         fprintf(stderr, ".%s", entry->compound_entry->base.symbol->string);
3383                 } else if (is_type_array(type)) {
3384                         fprintf(stderr, "[%u]", (unsigned) entry->index);
3385                 } else {
3386                         fprintf(stderr, "-INVALID-");
3387                 }
3388         }
3389         fprintf(stderr, "  (");
3390         print_type(path->top_type);
3391         fprintf(stderr, ")");
3392 }
3393
3394 static type_path_entry_t *get_type_path_top(const type_path_t *path)
3395 {
3396         size_t len = ARR_LEN(path->path);
3397         assert(len > 0);
3398         return & path->path[len-1];
3399 }
3400
3401 static type_path_entry_t *append_to_type_path(type_path_t *path)
3402 {
3403         size_t len = ARR_LEN(path->path);
3404         ARR_RESIZE(type_path_entry_t, path->path, len+1);
3405
3406         type_path_entry_t *result = & path->path[len];
3407         memset(result, 0, sizeof(result[0]));
3408         return result;
3409 }
3410
3411 static size_t get_compound_member_count(const compound_type_t *type)
3412 {
3413         compound_t *compound  = type->compound;
3414         size_t      n_members = 0;
3415         entity_t   *member    = compound->members.entities;
3416         for ( ; member != NULL; member = member->base.next) {
3417                 ++n_members;
3418         }
3419
3420         return n_members;
3421 }
3422
3423 static ir_initializer_t *get_initializer_entry(type_path_t *path)
3424 {
3425         type_t *orig_top_type = path->top_type;
3426         type_t *top_type      = skip_typeref(orig_top_type);
3427
3428         assert(is_type_compound(top_type) || is_type_array(top_type));
3429
3430         if (ARR_LEN(path->path) == 0) {
3431                 return NULL;
3432         } else {
3433                 type_path_entry_t *top         = get_type_path_top(path);
3434                 ir_initializer_t  *initializer = top->initializer;
3435                 return get_initializer_compound_value(initializer, top->index);
3436         }
3437 }
3438
3439 static void descend_into_subtype(type_path_t *path)
3440 {
3441         type_t *orig_top_type = path->top_type;
3442         type_t *top_type      = skip_typeref(orig_top_type);
3443
3444         assert(is_type_compound(top_type) || is_type_array(top_type));
3445
3446         ir_initializer_t *initializer = get_initializer_entry(path);
3447
3448         type_path_entry_t *top = append_to_type_path(path);
3449         top->type              = top_type;
3450
3451         size_t len;
3452
3453         if (is_type_compound(top_type)) {
3454                 compound_t *compound = top_type->compound.compound;
3455                 entity_t   *entry    = compound->members.entities;
3456
3457                 top->compound_entry = entry;
3458                 top->index          = 0;
3459                 len                 = get_compound_member_count(&top_type->compound);
3460                 if (entry != NULL) {
3461                         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
3462                         path->top_type = entry->declaration.type;
3463                 }
3464         } else {
3465                 assert(is_type_array(top_type));
3466                 assert(top_type->array.size > 0);
3467
3468                 top->index     = 0;
3469                 path->top_type = top_type->array.element_type;
3470                 len            = top_type->array.size;
3471         }
3472         if (initializer == NULL
3473                         || get_initializer_kind(initializer) == IR_INITIALIZER_NULL) {
3474                 initializer = create_initializer_compound(len);
3475                 /* we have to set the entry at the 2nd latest path entry... */
3476                 size_t path_len = ARR_LEN(path->path);
3477                 assert(path_len >= 1);
3478                 if (path_len > 1) {
3479                         type_path_entry_t *entry        = & path->path[path_len-2];
3480                         ir_initializer_t  *tinitializer = entry->initializer;
3481                         set_initializer_compound_value(tinitializer, entry->index,
3482                                                        initializer);
3483                 }
3484         }
3485         top->initializer = initializer;
3486 }
3487
3488 static void ascend_from_subtype(type_path_t *path)
3489 {
3490         type_path_entry_t *top = get_type_path_top(path);
3491
3492         path->top_type = top->type;
3493
3494         size_t len = ARR_LEN(path->path);
3495         ARR_RESIZE(type_path_entry_t, path->path, len-1);
3496 }
3497
3498 static void walk_designator(type_path_t *path, const designator_t *designator)
3499 {
3500         /* designators start at current object type */
3501         ARR_RESIZE(type_path_entry_t, path->path, 1);
3502
3503         for ( ; designator != NULL; designator = designator->next) {
3504                 type_path_entry_t *top         = get_type_path_top(path);
3505                 type_t            *orig_type   = top->type;
3506                 type_t            *type        = skip_typeref(orig_type);
3507
3508                 if (designator->symbol != NULL) {
3509                         assert(is_type_compound(type));
3510                         size_t    index  = 0;
3511                         symbol_t *symbol = designator->symbol;
3512
3513                         compound_t *compound = type->compound.compound;
3514                         entity_t   *iter     = compound->members.entities;
3515                         for ( ; iter != NULL; iter = iter->base.next, ++index) {
3516                                 if (iter->base.symbol == symbol) {
3517                                         assert(iter->kind == ENTITY_COMPOUND_MEMBER);
3518                                         break;
3519                                 }
3520                         }
3521                         assert(iter != NULL);
3522
3523                         top->type           = orig_type;
3524                         top->compound_entry = iter;
3525                         top->index          = index;
3526                         orig_type           = iter->declaration.type;
3527                 } else {
3528                         expression_t *array_index = designator->array_index;
3529                         assert(designator->array_index != NULL);
3530                         assert(is_type_array(type));
3531
3532                         long index = fold_constant(array_index);
3533                         assert(index >= 0);
3534 #ifndef NDEBUG
3535                         if (type->array.size_constant) {
3536                                 long array_size = type->array.size;
3537                                 assert(index < array_size);
3538                         }
3539 #endif
3540
3541                         top->type  = orig_type;
3542                         top->index = (size_t) index;
3543                         orig_type  = type->array.element_type;
3544                 }
3545                 path->top_type = orig_type;
3546
3547                 if (designator->next != NULL) {
3548                         descend_into_subtype(path);
3549                 }
3550         }
3551
3552         path->invalid  = false;
3553 }
3554
3555 static void advance_current_object(type_path_t *path)
3556 {
3557         if (path->invalid) {
3558                 /* TODO: handle this... */
3559                 panic("invalid initializer in ast2firm (excessive elements)");
3560         }
3561
3562         type_path_entry_t *top = get_type_path_top(path);
3563
3564         type_t *type = skip_typeref(top->type);
3565         if (is_type_union(type)) {
3566                 top->compound_entry = NULL;
3567         } else if (is_type_struct(type)) {
3568                 entity_t *entry = top->compound_entry;
3569
3570                 top->index++;
3571                 entry               = entry->base.next;
3572                 top->compound_entry = entry;
3573                 if (entry != NULL) {
3574                         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
3575                         path->top_type = entry->declaration.type;
3576                         return;
3577                 }
3578         } else {
3579                 assert(is_type_array(type));
3580
3581                 top->index++;
3582                 if (!type->array.size_constant || top->index < type->array.size) {
3583                         return;
3584                 }
3585         }
3586
3587         /* we're past the last member of the current sub-aggregate, try if we
3588          * can ascend in the type hierarchy and continue with another subobject */
3589         size_t len = ARR_LEN(path->path);
3590
3591         if (len > 1) {
3592                 ascend_from_subtype(path);
3593                 advance_current_object(path);
3594         } else {
3595                 path->invalid = true;
3596         }
3597 }
3598
3599
3600 static ir_initializer_t *create_ir_initializer(
3601                 const initializer_t *initializer, type_t *type);
3602
3603 static ir_initializer_t *create_ir_initializer_value(
3604                 const initializer_value_t *initializer)
3605 {
3606         if (is_type_compound(initializer->value->base.type)) {
3607                 panic("initializer creation for compounds not implemented yet");
3608         }
3609         ir_node *value = expression_to_firm(initializer->value);
3610         return create_initializer_const(value);
3611 }
3612
3613 /** test wether type can be initialized by a string constant */
3614 static bool is_string_type(type_t *type)
3615 {
3616         type_t *inner;
3617         if (is_type_pointer(type)) {
3618                 inner = skip_typeref(type->pointer.points_to);
3619         } else if(is_type_array(type)) {
3620                 inner = skip_typeref(type->array.element_type);
3621         } else {
3622                 return false;
3623         }
3624
3625         return is_type_integer(inner);
3626 }
3627
3628 static ir_initializer_t *create_ir_initializer_list(
3629                 const initializer_list_t *initializer, type_t *type)
3630 {
3631         type_path_t path;
3632         memset(&path, 0, sizeof(path));
3633         path.top_type = type;
3634         path.path     = NEW_ARR_F(type_path_entry_t, 0);
3635
3636         descend_into_subtype(&path);
3637
3638         for (size_t i = 0; i < initializer->len; ++i) {
3639                 const initializer_t *sub_initializer = initializer->initializers[i];
3640
3641                 if (sub_initializer->kind == INITIALIZER_DESIGNATOR) {
3642                         walk_designator(&path, sub_initializer->designator.designator);
3643                         continue;
3644                 }
3645
3646                 if (sub_initializer->kind == INITIALIZER_VALUE) {
3647                         /* we might have to descend into types until we're at a scalar
3648                          * type */
3649                         while(true) {
3650                                 type_t *orig_top_type = path.top_type;
3651                                 type_t *top_type      = skip_typeref(orig_top_type);
3652
3653                                 if (is_type_scalar(top_type))
3654                                         break;
3655                                 descend_into_subtype(&path);
3656                         }
3657                 } else if (sub_initializer->kind == INITIALIZER_STRING
3658                                 || sub_initializer->kind == INITIALIZER_WIDE_STRING) {
3659                         /* we might have to descend into types until we're at a scalar
3660                          * type */
3661                         while (true) {
3662                                 type_t *orig_top_type = path.top_type;
3663                                 type_t *top_type      = skip_typeref(orig_top_type);
3664
3665                                 if (is_string_type(top_type))
3666                                         break;
3667                                 descend_into_subtype(&path);
3668                         }
3669                 }
3670
3671                 ir_initializer_t *sub_irinitializer
3672                         = create_ir_initializer(sub_initializer, path.top_type);
3673
3674                 size_t path_len = ARR_LEN(path.path);
3675                 assert(path_len >= 1);
3676                 type_path_entry_t *entry        = & path.path[path_len-1];
3677                 ir_initializer_t  *tinitializer = entry->initializer;
3678                 set_initializer_compound_value(tinitializer, entry->index,
3679                                                sub_irinitializer);
3680
3681                 advance_current_object(&path);
3682         }
3683
3684         assert(ARR_LEN(path.path) >= 1);
3685         ir_initializer_t *result = path.path[0].initializer;
3686         DEL_ARR_F(path.path);
3687
3688         return result;
3689 }
3690
3691 static ir_initializer_t *create_ir_initializer_string(
3692                 const initializer_string_t *initializer, type_t *type)
3693 {
3694         type = skip_typeref(type);
3695
3696         size_t            string_len    = initializer->string.size;
3697         assert(type->kind == TYPE_ARRAY);
3698         assert(type->array.size_constant);
3699         size_t            len           = type->array.size;
3700         ir_initializer_t *irinitializer = create_initializer_compound(len);
3701
3702         const char *string = initializer->string.begin;
3703         ir_mode    *mode   = get_ir_mode(type->array.element_type);
3704
3705         for (size_t i = 0; i < len; ++i) {
3706                 char c = 0;
3707                 if (i < string_len)
3708                         c = string[i];
3709
3710                 tarval           *tv = new_tarval_from_long(c, mode);
3711                 ir_initializer_t *char_initializer = create_initializer_tarval(tv);
3712
3713                 set_initializer_compound_value(irinitializer, i, char_initializer);
3714         }
3715
3716         return irinitializer;
3717 }
3718
3719 static ir_initializer_t *create_ir_initializer_wide_string(
3720                 const initializer_wide_string_t *initializer, type_t *type)
3721 {
3722         size_t            string_len    = initializer->string.size;
3723         assert(type->kind == TYPE_ARRAY);
3724         assert(type->array.size_constant);
3725         size_t            len           = type->array.size;
3726         ir_initializer_t *irinitializer = create_initializer_compound(len);
3727
3728         const wchar_rep_t *string = initializer->string.begin;
3729         ir_mode           *mode   = get_type_mode(ir_type_wchar_t);
3730
3731         for (size_t i = 0; i < len; ++i) {
3732                 wchar_rep_t c = 0;
3733                 if (i < string_len) {
3734                         c = string[i];
3735                 }
3736                 tarval *tv = new_tarval_from_long(c, mode);
3737                 ir_initializer_t *char_initializer = create_initializer_tarval(tv);
3738
3739                 set_initializer_compound_value(irinitializer, i, char_initializer);
3740         }
3741
3742         return irinitializer;
3743 }
3744
3745 static ir_initializer_t *create_ir_initializer(
3746                 const initializer_t *initializer, type_t *type)
3747 {
3748         switch(initializer->kind) {
3749                 case INITIALIZER_STRING:
3750                         return create_ir_initializer_string(&initializer->string, type);
3751
3752                 case INITIALIZER_WIDE_STRING:
3753                         return create_ir_initializer_wide_string(&initializer->wide_string,
3754                                                                  type);
3755
3756                 case INITIALIZER_LIST:
3757                         return create_ir_initializer_list(&initializer->list, type);
3758
3759                 case INITIALIZER_VALUE:
3760                         return create_ir_initializer_value(&initializer->value);
3761
3762                 case INITIALIZER_DESIGNATOR:
3763                         panic("unexpected designator initializer found");
3764         }
3765         panic("unknown initializer");
3766 }
3767
3768 static void create_dynamic_null_initializer(ir_type *type, dbg_info *dbgi,
3769                 ir_node *base_addr)
3770 {
3771         if (is_atomic_type(type)) {
3772                 ir_mode *mode = get_type_mode(type);
3773                 tarval  *zero = get_mode_null(mode);
3774                 ir_node *cnst = new_d_Const(dbgi, zero);
3775
3776                 /* TODO: bitfields */
3777                 ir_node *mem    = get_store();
3778                 ir_node *store  = new_d_Store(dbgi, mem, base_addr, cnst);
3779                 ir_node *proj_m = new_Proj(store, mode_M, pn_Store_M);
3780                 set_store(proj_m);
3781         } else {
3782                 assert(is_compound_type(type));
3783
3784                 int n_members;
3785                 if (is_Array_type(type)) {
3786                         assert(has_array_upper_bound(type, 0));
3787                         n_members = get_array_upper_bound_int(type, 0);
3788                 } else {
3789                         n_members = get_compound_n_members(type);
3790                 }
3791
3792                 for (int i = 0; i < n_members; ++i) {
3793                         ir_node *addr;
3794                         ir_type *irtype;
3795                         if (is_Array_type(type)) {
3796                                 ir_entity *entity   = get_array_element_entity(type);
3797                                 tarval    *index_tv = new_tarval_from_long(i, mode_uint);
3798                                 ir_node   *cnst     = new_d_Const(dbgi, index_tv);
3799                                 ir_node   *in[1]    = { cnst };
3800                                 irtype = get_array_element_type(type);
3801                                 addr   = new_d_Sel(dbgi, new_NoMem(), base_addr, 1, in, entity);
3802                         } else {
3803                                 ir_entity *member = get_compound_member(type, i);
3804
3805                                 irtype = get_entity_type(member);
3806                                 addr   = new_d_simpleSel(dbgi, new_NoMem(), base_addr, member);
3807                         }
3808
3809                         create_dynamic_null_initializer(irtype, dbgi, addr);
3810                 }
3811         }
3812 }
3813
3814 static void create_dynamic_initializer_sub(ir_initializer_t *initializer,
3815                 ir_entity *entity, ir_type *type, dbg_info *dbgi, ir_node *base_addr)
3816 {
3817         switch(get_initializer_kind(initializer)) {
3818         case IR_INITIALIZER_NULL: {
3819                 create_dynamic_null_initializer(type, dbgi, base_addr);
3820                 return;
3821         }
3822         case IR_INITIALIZER_CONST: {
3823                 ir_node *node     = get_initializer_const_value(initializer);
3824                 ir_mode *mode     = get_irn_mode(node);
3825                 ir_type *ent_type = get_entity_type(entity);
3826
3827                 /* is it a bitfield type? */
3828                 if (is_Primitive_type(ent_type) &&
3829                                 get_primitive_base_type(ent_type) != NULL) {
3830                         bitfield_store_to_firm(dbgi, entity, base_addr, node, false);
3831                         return;
3832                 }
3833
3834                 assert(get_type_mode(type) == mode);
3835                 ir_node *mem    = get_store();
3836                 ir_node *store  = new_d_Store(dbgi, mem, base_addr, node);
3837                 ir_node *proj_m = new_Proj(store, mode_M, pn_Store_M);
3838                 set_store(proj_m);
3839                 return;
3840         }
3841         case IR_INITIALIZER_TARVAL: {
3842                 tarval  *tv       = get_initializer_tarval_value(initializer);
3843                 ir_mode *mode     = get_tarval_mode(tv);
3844                 ir_node *cnst     = new_d_Const(dbgi, tv);
3845                 ir_type *ent_type = get_entity_type(entity);
3846
3847                 /* is it a bitfield type? */
3848                 if (is_Primitive_type(ent_type) &&
3849                                 get_primitive_base_type(ent_type) != NULL) {
3850                         bitfield_store_to_firm(dbgi, entity, base_addr, cnst, false);
3851                         return;
3852                 }
3853
3854                 assert(get_type_mode(type) == mode);
3855                 ir_node *mem    = get_store();
3856                 ir_node *store  = new_d_Store(dbgi, mem, base_addr, cnst);
3857                 ir_node *proj_m = new_Proj(store, mode_M, pn_Store_M);
3858                 set_store(proj_m);
3859                 return;
3860         }
3861         case IR_INITIALIZER_COMPOUND: {
3862                 assert(is_compound_type(type));
3863                 int n_members;
3864                 if (is_Array_type(type)) {
3865                         assert(has_array_upper_bound(type, 0));
3866                         n_members = get_array_upper_bound_int(type, 0);
3867                 } else {
3868                         n_members = get_compound_n_members(type);
3869                 }
3870
3871                 if (get_initializer_compound_n_entries(initializer)
3872                                 != (unsigned) n_members)
3873                         panic("initializer doesn't match compound type");
3874
3875                 for (int i = 0; i < n_members; ++i) {
3876                         ir_node   *addr;
3877                         ir_type   *irtype;
3878                         ir_entity *sub_entity;
3879                         if (is_Array_type(type)) {
3880                                 tarval    *index_tv = new_tarval_from_long(i, mode_uint);
3881                                 ir_node   *cnst     = new_d_Const(dbgi, index_tv);
3882                                 ir_node   *in[1]    = { cnst };
3883                                 irtype     = get_array_element_type(type);
3884                                 sub_entity = get_array_element_entity(type);
3885                                 addr       = new_d_Sel(dbgi, new_NoMem(), base_addr, 1, in,
3886                                                        sub_entity);
3887                         } else {
3888                                 sub_entity = get_compound_member(type, i);
3889                                 irtype     = get_entity_type(sub_entity);
3890                                 addr       = new_d_simpleSel(dbgi, new_NoMem(), base_addr,
3891                                                              sub_entity);
3892                         }
3893
3894                         ir_initializer_t *sub_init
3895                                 = get_initializer_compound_value(initializer, i);
3896
3897                         create_dynamic_initializer_sub(sub_init, sub_entity, irtype, dbgi,
3898                                                        addr);
3899                 }
3900                 return;
3901         }
3902         }
3903
3904         panic("invalid IR_INITIALIZER found");
3905 }
3906
3907 static void create_dynamic_initializer(ir_initializer_t *initializer,
3908                 dbg_info *dbgi, ir_entity *entity)
3909 {
3910         ir_node *frame     = get_local_frame(entity);
3911         ir_node *base_addr = new_d_simpleSel(dbgi, new_NoMem(), frame, entity);
3912         ir_type *type      = get_entity_type(entity);
3913
3914         create_dynamic_initializer_sub(initializer, entity, type, dbgi, base_addr);
3915 }
3916
3917 static void create_local_initializer(initializer_t *initializer, dbg_info *dbgi,
3918                                      ir_entity *entity, type_t *type)
3919 {
3920         ir_node *memory = get_store();
3921         ir_node *nomem  = new_NoMem();
3922         ir_node *frame  = get_irg_frame(current_ir_graph);
3923         ir_node *addr   = new_d_simpleSel(dbgi, nomem, frame, entity);
3924
3925         if (initializer->kind == INITIALIZER_VALUE) {
3926                 initializer_value_t *initializer_value = &initializer->value;
3927
3928                 ir_node *value = expression_to_firm(initializer_value->value);
3929                 type = skip_typeref(type);
3930                 assign_value(dbgi, addr, type, value);
3931                 return;
3932         }
3933
3934         if (!is_constant_initializer(initializer)) {
3935                 ir_initializer_t *irinitializer
3936                         = create_ir_initializer(initializer, type);
3937
3938                 create_dynamic_initializer(irinitializer, dbgi, entity);
3939                 return;
3940         }
3941
3942         /* create the ir_initializer */
3943         ir_graph *const old_current_ir_graph = current_ir_graph;
3944         current_ir_graph = get_const_code_irg();
3945
3946         ir_initializer_t *irinitializer = create_ir_initializer(initializer, type);
3947
3948         assert(current_ir_graph == get_const_code_irg());
3949         current_ir_graph = old_current_ir_graph;
3950
3951         /* create a "template" entity which is copied to the entity on the stack */
3952         ident     *const id          = id_unique("initializer.%u");
3953         ir_type   *const irtype      = get_ir_type(type);
3954         ir_type   *const global_type = get_glob_type();
3955         ir_entity *const init_entity = new_d_entity(global_type, id, irtype, dbgi);
3956         set_entity_ld_ident(init_entity, id);
3957
3958         set_entity_variability(init_entity, variability_initialized);
3959         set_entity_visibility(init_entity, visibility_local);
3960         set_entity_allocation(init_entity, allocation_static);
3961
3962         set_entity_initializer(init_entity, irinitializer);
3963
3964         ir_node *const src_addr = create_symconst(dbgi, mode_P_data, init_entity);
3965         ir_node *const copyb    = new_d_CopyB(dbgi, memory, addr, src_addr, irtype);
3966
3967         ir_node *const copyb_mem = new_Proj(copyb, mode_M, pn_CopyB_M_regular);
3968         set_store(copyb_mem);
3969 }
3970
3971 static void create_initializer_local_variable_entity(entity_t *entity)
3972 {
3973         assert(entity->kind == ENTITY_VARIABLE);
3974         initializer_t *initializer = entity->variable.initializer;
3975         dbg_info      *dbgi        = get_dbg_info(&entity->base.source_position);
3976         ir_entity     *irentity    = entity->variable.v.entity;
3977         type_t        *type        = entity->declaration.type;
3978         create_local_initializer(initializer, dbgi, irentity, type);
3979 }
3980
3981 static void create_variable_initializer(entity_t *entity)
3982 {
3983         assert(entity->kind == ENTITY_VARIABLE);
3984         initializer_t *initializer = entity->variable.initializer;
3985         if (initializer == NULL)
3986                 return;
3987
3988         declaration_kind_t declaration_kind
3989                 = (declaration_kind_t) entity->declaration.kind;
3990         if (declaration_kind == DECLARATION_KIND_LOCAL_VARIABLE_ENTITY) {
3991                 create_initializer_local_variable_entity(entity);
3992                 return;
3993         }
3994
3995         type_t            *type = entity->declaration.type;
3996         type_qualifiers_t  tq   = get_type_qualifier(type, true);
3997
3998         if (initializer->kind == INITIALIZER_VALUE) {
3999                 initializer_value_t *initializer_value = &initializer->value;
4000                 dbg_info            *dbgi = get_dbg_info(&entity->base.source_position);
4001
4002                 ir_node *value = expression_to_firm(initializer_value->value);
4003                 value = do_strict_conv(dbgi, value);
4004
4005                 if (declaration_kind == DECLARATION_KIND_LOCAL_VARIABLE) {
4006                         set_value(entity->variable.v.value_number, value);
4007                 } else {
4008                         assert(declaration_kind == DECLARATION_KIND_GLOBAL_VARIABLE);
4009
4010                         ir_entity *irentity = entity->variable.v.entity;
4011
4012                         if (tq & TYPE_QUALIFIER_CONST) {
4013                                 set_entity_variability(irentity, variability_constant);
4014                         } else {
4015                                 set_entity_variability(irentity, variability_initialized);
4016                         }
4017                         set_atomic_ent_value(irentity, value);
4018                 }
4019         } else {
4020                 assert(declaration_kind == DECLARATION_KIND_LOCAL_VARIABLE_ENTITY ||
4021                        declaration_kind == DECLARATION_KIND_GLOBAL_VARIABLE);
4022
4023                 ir_entity        *irentity        = entity->variable.v.entity;
4024                 ir_initializer_t *irinitializer
4025                         = create_ir_initializer(initializer, type);
4026
4027                 if (tq & TYPE_QUALIFIER_CONST) {
4028                         set_entity_variability(irentity, variability_constant);
4029                 } else {
4030                         set_entity_variability(irentity, variability_initialized);
4031                 }
4032                 set_entity_initializer(irentity, irinitializer);
4033         }
4034 }
4035
4036 static void create_variable_length_array(entity_t *entity)
4037 {
4038         assert(entity->kind == ENTITY_VARIABLE);
4039         assert(entity->variable.initializer == NULL);
4040
4041         entity->declaration.kind    = DECLARATION_KIND_VARIABLE_LENGTH_ARRAY;
4042         entity->variable.v.vla_base = NULL;
4043
4044         /* TODO: record VLA somewhere so we create the free node when we leave
4045          * it's scope */
4046 }
4047
4048 static void allocate_variable_length_array(entity_t *entity)
4049 {
4050         assert(entity->kind == ENTITY_VARIABLE);
4051         assert(entity->variable.initializer == NULL);
4052         assert(get_cur_block() != NULL);
4053
4054         dbg_info *dbgi      = get_dbg_info(&entity->base.source_position);
4055         type_t   *type      = entity->declaration.type;
4056         ir_type  *el_type   = get_ir_type(type->array.element_type);
4057
4058         /* make sure size_node is calculated */
4059         get_type_size(type);
4060         ir_node  *elems = type->array.size_node;
4061         ir_node  *mem   = get_store();
4062         ir_node  *alloc = new_d_Alloc(dbgi, mem, elems, el_type, stack_alloc);
4063
4064         ir_node  *proj_m = new_d_Proj(dbgi, alloc, mode_M, pn_Alloc_M);
4065         ir_node  *addr   = new_d_Proj(dbgi, alloc, mode_P_data, pn_Alloc_res);
4066         set_store(proj_m);
4067
4068         assert(entity->declaration.kind == DECLARATION_KIND_VARIABLE_LENGTH_ARRAY);
4069         entity->variable.v.vla_base = addr;
4070 }
4071
4072 /**
4073  * Creates a Firm local variable from a declaration.
4074  */
4075 static void create_local_variable(entity_t *entity)
4076 {
4077         assert(entity->kind == ENTITY_VARIABLE);
4078         assert(entity->declaration.kind == DECLARATION_KIND_UNKNOWN);
4079
4080         bool needs_entity = entity->variable.address_taken;
4081         type_t *type = skip_typeref(entity->declaration.type);
4082
4083         /* is it a variable length array? */
4084         if (is_type_array(type) && !type->array.size_constant) {
4085                 create_variable_length_array(entity);
4086                 return;
4087         } else if (is_type_array(type) || is_type_compound(type)) {
4088                 needs_entity = true;
4089         } else if (type->base.qualifiers & TYPE_QUALIFIER_VOLATILE) {
4090                 needs_entity = true;
4091         }
4092
4093         if (needs_entity) {
4094                 ir_type *frame_type = get_irg_frame_type(current_ir_graph);
4095                 create_variable_entity(entity,
4096                                        DECLARATION_KIND_LOCAL_VARIABLE_ENTITY,
4097                                        frame_type);
4098         } else {
4099                 entity->declaration.kind        = DECLARATION_KIND_LOCAL_VARIABLE;
4100                 entity->variable.v.value_number = next_value_number_function;
4101                 set_irg_loc_description(current_ir_graph, next_value_number_function,
4102                                         entity);
4103                 ++next_value_number_function;
4104         }
4105 }
4106
4107 static void create_local_static_variable(entity_t *entity)
4108 {
4109         assert(entity->kind == ENTITY_VARIABLE);
4110         assert(entity->declaration.kind == DECLARATION_KIND_UNKNOWN);
4111
4112         type_t    *const type     = skip_typeref(entity->declaration.type);
4113         ir_type   *const var_type = entity->variable.thread_local ?
4114                 get_tls_type() : get_glob_type();
4115         ir_type   *const irtype   = get_ir_type(type);
4116         dbg_info  *const dbgi     = get_dbg_info(&entity->base.source_position);
4117
4118         size_t l = strlen(entity->base.symbol->string);
4119         char   buf[l + sizeof(".%u")];
4120         snprintf(buf, sizeof(buf), "%s.%%u", entity->base.symbol->string);
4121         ident     *const id = id_unique(buf);
4122
4123         ir_entity *const irentity = new_d_entity(var_type, id, irtype, dbgi);
4124
4125         if (type->base.qualifiers & TYPE_QUALIFIER_VOLATILE) {
4126                 set_entity_volatility(irentity, volatility_is_volatile);
4127         }
4128
4129         entity->declaration.kind  = DECLARATION_KIND_GLOBAL_VARIABLE;
4130         entity->variable.v.entity = irentity;
4131         set_entity_ld_ident(irentity, id);
4132         set_entity_variability(irentity, variability_uninitialized);
4133         set_entity_visibility(irentity, visibility_local);
4134         set_entity_allocation(irentity, entity->variable.thread_local ?
4135                 allocation_automatic : allocation_static);
4136
4137         ir_graph *const old_current_ir_graph = current_ir_graph;
4138         current_ir_graph = get_const_code_irg();
4139
4140         create_variable_initializer(entity);
4141
4142         assert(current_ir_graph == get_const_code_irg());
4143         current_ir_graph = old_current_ir_graph;
4144 }
4145
4146
4147
4148 static void return_statement_to_firm(return_statement_t *statement)
4149 {
4150         if (get_cur_block() == NULL)
4151                 return;
4152
4153         dbg_info *dbgi        = get_dbg_info(&statement->base.source_position);
4154         type_t   *type        = current_function_entity->declaration.type;
4155         ir_type  *func_irtype = get_ir_type(type);
4156
4157
4158         ir_node *in[1];
4159         int      in_len;
4160         if (get_method_n_ress(func_irtype) > 0) {
4161                 ir_type *res_type = get_method_res_type(func_irtype, 0);
4162
4163                 if (statement->value != NULL) {
4164                         ir_node *node = expression_to_firm(statement->value);
4165                         node  = do_strict_conv(dbgi, node);
4166                         in[0] = node;
4167                 } else {
4168                         ir_mode *mode;
4169                         if (is_compound_type(res_type)) {
4170                                 mode = mode_P_data;
4171                         } else {
4172                                 mode = get_type_mode(res_type);
4173                         }
4174                         in[0] = new_Unknown(mode);
4175                 }
4176                 in_len = 1;
4177         } else {
4178                 /* build return_value for its side effects */
4179                 if (statement->value != NULL) {
4180                         expression_to_firm(statement->value);
4181                 }
4182                 in_len = 0;
4183         }
4184
4185         ir_node  *store = get_store();
4186         ir_node  *ret   = new_d_Return(dbgi, store, in_len, in);
4187
4188         ir_node *end_block = get_irg_end_block(current_ir_graph);
4189         add_immBlock_pred(end_block, ret);
4190
4191         set_cur_block(NULL);
4192 }
4193
4194 static ir_node *expression_statement_to_firm(expression_statement_t *statement)
4195 {
4196         if (get_cur_block() == NULL)
4197                 return NULL;
4198
4199         return expression_to_firm(statement->expression);
4200 }
4201
4202 static ir_node *compound_statement_to_firm(compound_statement_t *compound)
4203 {
4204         entity_t *entity = compound->scope.entities;
4205         for ( ; entity != NULL; entity = entity->base.next) {
4206                 if (!is_declaration(entity))
4207                         continue;
4208
4209                 create_local_declaration(entity);
4210         }
4211
4212         ir_node     *result    = NULL;
4213         statement_t *statement = compound->statements;
4214         for ( ; statement != NULL; statement = statement->base.next) {
4215                 if (statement->base.next == NULL
4216                                 && statement->kind == STATEMENT_EXPRESSION) {
4217                         result = expression_statement_to_firm(
4218                                         &statement->expression);
4219                         break;
4220                 }
4221                 statement_to_firm(statement);
4222         }
4223
4224         return result;
4225 }
4226
4227 static void create_global_variable(entity_t *entity)
4228 {
4229         assert(entity->kind == ENTITY_VARIABLE);
4230
4231         ir_visibility vis;
4232         switch ((storage_class_tag_t)entity->declaration.storage_class) {
4233                 case STORAGE_CLASS_STATIC: vis = visibility_local;              break;
4234                 case STORAGE_CLASS_EXTERN: vis = visibility_external_allocated; break;
4235                 case STORAGE_CLASS_NONE:   vis = visibility_external_visible;   break;
4236
4237                 default: panic("Invalid storage class for global variable");
4238         }
4239
4240         ir_type *var_type = entity->variable.thread_local ?
4241                 get_tls_type() : get_glob_type();
4242         create_variable_entity(entity,
4243                         DECLARATION_KIND_GLOBAL_VARIABLE, var_type);
4244         set_entity_visibility(entity->variable.v.entity, vis);
4245 }
4246
4247 static void create_local_declaration(entity_t *entity)
4248 {
4249         assert(is_declaration(entity));
4250
4251         /* construct type */
4252         (void) get_ir_type(entity->declaration.type);
4253         if (entity->base.symbol == NULL) {
4254                 return;
4255         }
4256
4257         switch ((storage_class_tag_t) entity->declaration.storage_class) {
4258         case STORAGE_CLASS_STATIC:
4259                 create_local_static_variable(entity);
4260                 return;
4261         case STORAGE_CLASS_EXTERN:
4262                 if (entity->kind == ENTITY_FUNCTION) {
4263                         assert(entity->function.statement == NULL);
4264                         get_function_entity(entity);
4265                 } else {
4266                         create_global_variable(entity);
4267                         create_variable_initializer(entity);
4268                 }
4269                 return;
4270         case STORAGE_CLASS_NONE:
4271         case STORAGE_CLASS_AUTO:
4272         case STORAGE_CLASS_REGISTER:
4273                 if (entity->kind == ENTITY_FUNCTION) {
4274                         if (entity->function.statement != NULL) {
4275                                 get_function_entity(entity);
4276                                 entity->declaration.kind = DECLARATION_KIND_INNER_FUNCTION;
4277                                 enqueue_inner_function(entity);
4278                         } else {
4279                                 get_function_entity(entity);
4280                         }
4281                 } else {
4282                         create_local_variable(entity);
4283                 }
4284                 return;
4285         case STORAGE_CLASS_TYPEDEF:
4286                 break;
4287         }
4288         panic("invalid storage class found");
4289 }
4290
4291 static void initialize_local_declaration(entity_t *entity)
4292 {
4293         if (entity->base.symbol == NULL)
4294                 return;
4295
4296         switch ((declaration_kind_t) entity->declaration.kind) {
4297         case DECLARATION_KIND_LOCAL_VARIABLE:
4298         case DECLARATION_KIND_LOCAL_VARIABLE_ENTITY:
4299                 create_variable_initializer(entity);
4300                 return;
4301
4302         case DECLARATION_KIND_VARIABLE_LENGTH_ARRAY:
4303                 allocate_variable_length_array(entity);
4304                 return;
4305
4306         case DECLARATION_KIND_COMPOUND_MEMBER:
4307         case DECLARATION_KIND_GLOBAL_VARIABLE:
4308         case DECLARATION_KIND_FUNCTION:
4309         case DECLARATION_KIND_INNER_FUNCTION:
4310                 return;
4311
4312         case DECLARATION_KIND_PARAMETER:
4313         case DECLARATION_KIND_PARAMETER_ENTITY:
4314                 panic("can't initialize parameters");
4315
4316         case DECLARATION_KIND_UNKNOWN:
4317                 panic("can't initialize unknown declaration");
4318         }
4319         panic("invalid declaration kind");
4320 }
4321
4322 static void declaration_statement_to_firm(declaration_statement_t *statement)
4323 {
4324         entity_t *      entity = statement->declarations_begin;
4325         entity_t *const last   = statement->declarations_end;
4326         if (entity != NULL) {
4327                 for ( ;; entity = entity->base.next) {
4328                         if (is_declaration(entity)) {
4329                                 initialize_local_declaration(entity);
4330                         } else if (entity->kind == ENTITY_TYPEDEF) {
4331                                 type_t *const type = entity->typedefe.type;
4332                                 if (is_type_array(type) && type->array.is_vla)
4333                                         get_vla_size(&type->array);
4334                         }
4335                         if (entity == last)
4336                                 break;
4337                 }
4338         }
4339 }
4340
4341 static void if_statement_to_firm(if_statement_t *statement)
4342 {
4343         ir_node *cur_block = get_cur_block();
4344
4345         ir_node *fallthrough_block = NULL;
4346
4347         /* the true (blocks) */
4348         ir_node *true_block = NULL;
4349         if (statement->true_statement != NULL) {
4350                 true_block = new_immBlock();
4351                 set_cur_block(true_block);
4352                 statement_to_firm(statement->true_statement);
4353                 if (get_cur_block() != NULL) {
4354                         ir_node *jmp = new_Jmp();
4355                         if (fallthrough_block == NULL)
4356                                 fallthrough_block = new_immBlock();
4357                         add_immBlock_pred(fallthrough_block, jmp);
4358                 }
4359         }
4360
4361         /* the false (blocks) */
4362         ir_node *false_block = NULL;
4363         if (statement->false_statement != NULL) {
4364                 false_block = new_immBlock();
4365                 set_cur_block(false_block);
4366
4367                 statement_to_firm(statement->false_statement);
4368                 if (get_cur_block() != NULL) {
4369                         ir_node *jmp = new_Jmp();
4370                         if (fallthrough_block == NULL)
4371                                 fallthrough_block = new_immBlock();
4372                         add_immBlock_pred(fallthrough_block, jmp);
4373                 }
4374         }
4375
4376         /* create the condition */
4377         if (cur_block != NULL) {
4378                 if (true_block == NULL || false_block == NULL) {
4379                         if (fallthrough_block == NULL)
4380                                 fallthrough_block = new_immBlock();
4381                         if (true_block == NULL)
4382                                 true_block = fallthrough_block;
4383                         if (false_block == NULL)
4384                                 false_block = fallthrough_block;
4385                 }
4386
4387                 set_cur_block(cur_block);
4388                 create_condition_evaluation(statement->condition, true_block,
4389                                             false_block);
4390         }
4391
4392         mature_immBlock(true_block);
4393         if (false_block != fallthrough_block && false_block != NULL) {
4394                 mature_immBlock(false_block);
4395         }
4396         if (fallthrough_block != NULL) {
4397                 mature_immBlock(fallthrough_block);
4398         }
4399
4400         set_cur_block(fallthrough_block);
4401 }
4402
4403 static void while_statement_to_firm(while_statement_t *statement)
4404 {
4405         ir_node *jmp = NULL;
4406         if (get_cur_block() != NULL) {
4407                 jmp = new_Jmp();
4408         }
4409
4410         /* create the header block */
4411         ir_node *header_block = new_immBlock();
4412         if (jmp != NULL) {
4413                 add_immBlock_pred(header_block, jmp);
4414         }
4415
4416         /* the loop body */
4417         ir_node *old_continue_label = continue_label;
4418         ir_node *old_break_label    = break_label;
4419         continue_label              = header_block;
4420         break_label                 = NULL;
4421
4422         ir_node *body_block = new_immBlock();
4423         set_cur_block(body_block);
4424         statement_to_firm(statement->body);
4425         ir_node *false_block = break_label;
4426
4427         assert(continue_label == header_block);
4428         continue_label = old_continue_label;
4429         break_label    = old_break_label;
4430
4431         if (get_cur_block() != NULL) {
4432                 jmp = new_Jmp();
4433                 add_immBlock_pred(header_block, jmp);
4434         }
4435
4436         /* shortcut for while(true) */
4437         if (is_constant_expression(statement->condition)
4438                         && fold_constant(statement->condition) != 0) {
4439                 set_cur_block(header_block);
4440                 ir_node *header_jmp = new_Jmp();
4441                 add_immBlock_pred(body_block, header_jmp);
4442
4443                 keep_alive(body_block);
4444                 keep_all_memory(body_block);
4445                 set_cur_block(body_block);
4446         } else {
4447                 if (false_block == NULL) {
4448                         false_block = new_immBlock();
4449                 }
4450
4451                 /* create the condition */
4452                 set_cur_block(header_block);
4453
4454                 create_condition_evaluation(statement->condition, body_block,
4455                                             false_block);
4456         }
4457
4458         mature_immBlock(body_block);
4459         mature_immBlock(header_block);
4460         if (false_block != NULL) {
4461                 mature_immBlock(false_block);
4462         }
4463
4464         set_cur_block(false_block);
4465 }
4466
4467 static void do_while_statement_to_firm(do_while_statement_t *statement)
4468 {
4469         ir_node *jmp = NULL;
4470         if (get_cur_block() != NULL) {
4471                 jmp = new_Jmp();
4472         }
4473
4474         /* create the header block */
4475         ir_node *header_block = new_immBlock();
4476
4477         /* the loop body */
4478         ir_node *body_block = new_immBlock();
4479         if (jmp != NULL) {
4480                 add_immBlock_pred(body_block, jmp);
4481         }
4482
4483         ir_node *old_continue_label = continue_label;
4484         ir_node *old_break_label    = break_label;
4485         continue_label              = header_block;
4486         break_label                 = NULL;
4487
4488         set_cur_block(body_block);
4489         statement_to_firm(statement->body);
4490         ir_node *false_block = break_label;
4491
4492         assert(continue_label == header_block);
4493         continue_label = old_continue_label;
4494         break_label    = old_break_label;
4495
4496         if (get_cur_block() != NULL) {
4497                 ir_node *body_jmp = new_Jmp();
4498                 add_immBlock_pred(header_block, body_jmp);
4499                 mature_immBlock(header_block);
4500         }
4501
4502         if (false_block == NULL) {
4503                 false_block = new_immBlock();
4504         }
4505
4506         /* create the condition */
4507         set_cur_block(header_block);
4508
4509         create_condition_evaluation(statement->condition, body_block, false_block);
4510         mature_immBlock(body_block);
4511         mature_immBlock(header_block);
4512         mature_immBlock(false_block);
4513
4514         set_cur_block(false_block);
4515 }
4516
4517 static void for_statement_to_firm(for_statement_t *statement)
4518 {
4519         ir_node *jmp = NULL;
4520
4521         /* create declarations */
4522         entity_t *entity = statement->scope.entities;
4523         for ( ; entity != NULL; entity = entity->base.next) {
4524                 if (!is_declaration(entity))
4525                         continue;
4526
4527                 create_local_declaration(entity);
4528         }
4529
4530         if (get_cur_block() != NULL) {
4531                 entity = statement->scope.entities;
4532                 for ( ; entity != NULL; entity = entity->base.next) {
4533                         if (!is_declaration(entity))
4534                                 continue;
4535
4536                         initialize_local_declaration(entity);
4537                 }
4538
4539                 if (statement->initialisation != NULL) {
4540                         expression_to_firm(statement->initialisation);
4541                 }
4542
4543                 jmp = new_Jmp();
4544         }
4545
4546
4547         /* create the step block */
4548         ir_node *const step_block = new_immBlock();
4549         set_cur_block(step_block);
4550         if (statement->step != NULL) {
4551                 expression_to_firm(statement->step);
4552         }
4553         ir_node *const step_jmp = new_Jmp();
4554
4555         /* create the header block */
4556         ir_node *const header_block = new_immBlock();
4557         set_cur_block(header_block);
4558         if (jmp != NULL) {
4559                 add_immBlock_pred(header_block, jmp);
4560         }
4561         add_immBlock_pred(header_block, step_jmp);
4562
4563         /* the false block */
4564         ir_node *const false_block = new_immBlock();
4565
4566         /* the loop body */
4567         ir_node *body_block;
4568         if (statement->body != NULL) {
4569                 ir_node *const old_continue_label = continue_label;
4570                 ir_node *const old_break_label    = break_label;
4571                 continue_label = step_block;
4572                 break_label    = false_block;
4573
4574                 body_block = new_immBlock();
4575                 set_cur_block(body_block);
4576                 statement_to_firm(statement->body);
4577
4578                 assert(continue_label == step_block);
4579                 assert(break_label    == false_block);
4580                 continue_label = old_continue_label;
4581                 break_label    = old_break_label;
4582
4583                 if (get_cur_block() != NULL) {
4584                         jmp = new_Jmp();
4585                         add_immBlock_pred(step_block, jmp);
4586                 }
4587         } else {
4588                 body_block = step_block;
4589         }
4590
4591         /* create the condition */
4592         set_cur_block(header_block);
4593         if (statement->condition != NULL) {
4594                 create_condition_evaluation(statement->condition, body_block,
4595                                             false_block);
4596         } else {
4597                 keep_alive(header_block);
4598                 keep_all_memory(header_block);
4599                 jmp = new_Jmp();
4600                 add_immBlock_pred(body_block, jmp);
4601         }
4602
4603         mature_immBlock(body_block);
4604         mature_immBlock(false_block);
4605         mature_immBlock(step_block);
4606         mature_immBlock(header_block);
4607         mature_immBlock(false_block);
4608
4609         set_cur_block(false_block);
4610 }
4611
4612 static void create_jump_statement(const statement_t *statement,
4613                                   ir_node *target_block)
4614 {
4615         if (get_cur_block() == NULL)
4616                 return;
4617
4618         dbg_info *dbgi = get_dbg_info(&statement->base.source_position);
4619         ir_node  *jump = new_d_Jmp(dbgi);
4620         add_immBlock_pred(target_block, jump);
4621
4622         set_cur_block(NULL);
4623 }
4624
4625 static ir_node *get_break_label(void)
4626 {
4627         if (break_label == NULL) {
4628                 break_label = new_immBlock();
4629         }
4630         return break_label;
4631 }
4632
4633 static void switch_statement_to_firm(switch_statement_t *statement)
4634 {
4635         dbg_info *dbgi = get_dbg_info(&statement->base.source_position);
4636
4637         ir_node *expression  = expression_to_firm(statement->expression);
4638         ir_node *cond        = new_d_Cond(dbgi, expression);
4639
4640         set_cur_block(NULL);
4641
4642         ir_node *const old_switch_cond       = current_switch_cond;
4643         ir_node *const old_break_label       = break_label;
4644         const bool     old_saw_default_label = saw_default_label;
4645         saw_default_label                    = false;
4646         current_switch_cond                  = cond;
4647         break_label                          = NULL;
4648         switch_statement_t *const old_switch = current_switch;
4649         current_switch                       = statement;
4650
4651         /* determine a free number for the default label */
4652         unsigned long num_cases = 0;
4653         long def_nr = 0;
4654         for (case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
4655                 if (l->expression == NULL) {
4656                         /* default case */
4657                         continue;
4658                 }
4659                 if (l->last_case >= l->first_case)
4660                         num_cases += l->last_case - l->first_case + 1;
4661                 if (l->last_case > def_nr)
4662                         def_nr = l->last_case;
4663         }
4664
4665         if (def_nr == INT_MAX) {
4666                 /* Bad: an overflow will occurr, we cannot be sure that the
4667                  * maximum + 1 is a free number. Scan the values a second
4668                  * time to find a free number.
4669                  */
4670                 unsigned char *bits = xmalloc((num_cases + 7) >> 3);
4671
4672                 memset(bits, 0, (num_cases + 7) >> 3);
4673                 for (case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
4674                         if (l->expression == NULL) {
4675                                 /* default case */
4676                                 continue;
4677                         }
4678                         unsigned long start = l->first_case > 0 ? (unsigned long)l->first_case : 0;
4679                         if (start < num_cases && l->last_case >= 0) {
4680                                 unsigned long end  = (unsigned long)l->last_case < num_cases ?
4681                                         (unsigned long)l->last_case : num_cases - 1;
4682                                 for (unsigned long cns = start; cns <= end; ++cns) {
4683                                         bits[cns >> 3] |= (1 << (cns & 7));
4684                                 }
4685                         }
4686                 }
4687                 /* We look at the first num_cases constants:
4688                  * Either they are densed, so we took the last (num_cases)
4689                  * one, or they are non densed, so we will find one free
4690                  * there...
4691                  */
4692                 unsigned long i;
4693                 for (i = 0; i < num_cases; ++i)
4694                         if ((bits[i >> 3] & (1 << (i & 7))) == 0)
4695                                 break;
4696
4697                 free(bits);
4698                 def_nr = i;
4699         } else {
4700                 ++def_nr;
4701         }
4702         statement->default_proj_nr = def_nr;
4703
4704         if (statement->body != NULL) {
4705                 statement_to_firm(statement->body);
4706         }
4707
4708         if (get_cur_block() != NULL) {
4709                 ir_node *jmp = new_Jmp();
4710                 add_immBlock_pred(get_break_label(), jmp);
4711         }
4712
4713         if (!saw_default_label) {
4714                 set_cur_block(get_nodes_block(cond));
4715                 ir_node *const proj = new_d_defaultProj(dbgi, cond,
4716                                                         statement->default_proj_nr);
4717                 add_immBlock_pred(get_break_label(), proj);
4718         }
4719
4720         if (break_label != NULL) {
4721                 mature_immBlock(break_label);
4722         }
4723         set_cur_block(break_label);
4724
4725         assert(current_switch_cond == cond);
4726         current_switch      = old_switch;
4727         current_switch_cond = old_switch_cond;
4728         break_label         = old_break_label;
4729         saw_default_label   = old_saw_default_label;
4730 }
4731
4732 static void case_label_to_firm(const case_label_statement_t *statement)
4733 {
4734         if (statement->is_empty_range)
4735                 return;
4736
4737         dbg_info *dbgi = get_dbg_info(&statement->base.source_position);
4738
4739         ir_node *const fallthrough = (get_cur_block() == NULL ? NULL : new_Jmp());
4740
4741         ir_node *proj;
4742         ir_node *block     = new_immBlock();
4743
4744         set_cur_block(get_nodes_block(current_switch_cond));
4745         if (statement->expression != NULL) {
4746                 long pn     = statement->first_case;
4747                 long end_pn = statement->last_case;
4748                 assert(pn <= end_pn);
4749                 /* create jumps for all cases in the given range */
4750                 do {
4751                         proj = new_d_Proj(dbgi, current_switch_cond, mode_X, pn);
4752                         add_immBlock_pred(block, proj);
4753                 } while(pn++ < end_pn);
4754         } else {
4755                 saw_default_label = true;
4756                 proj = new_d_defaultProj(dbgi, current_switch_cond,
4757                                          current_switch->default_proj_nr);
4758
4759                 add_immBlock_pred(block, proj);
4760         }
4761
4762         if (fallthrough != NULL) {
4763                 add_immBlock_pred(block, fallthrough);
4764         }
4765         mature_immBlock(block);
4766         set_cur_block(block);
4767
4768         if (statement->statement != NULL) {
4769                 statement_to_firm(statement->statement);
4770         }
4771 }
4772
4773 static void label_to_firm(const label_statement_t *statement)
4774 {
4775         ir_node *block = get_label_block(statement->label);
4776
4777         if (get_cur_block() != NULL) {
4778                 ir_node *jmp = new_Jmp();
4779                 add_immBlock_pred(block, jmp);
4780         }
4781
4782         set_cur_block(block);
4783         keep_alive(block);
4784         keep_all_memory(block);
4785
4786         if (statement->statement != NULL) {
4787                 statement_to_firm(statement->statement);
4788         }
4789 }
4790
4791 static void goto_to_firm(const goto_statement_t *statement)
4792 {
4793         if (get_cur_block() == NULL)
4794                 return;
4795
4796         if (statement->expression) {
4797                 ir_node  *irn  = expression_to_firm(statement->expression);
4798                 dbg_info *dbgi = get_dbg_info(&statement->base.source_position);
4799                 ir_node  *ijmp = new_d_IJmp(dbgi, irn);
4800
4801                 set_irn_link(ijmp, ijmp_list);
4802                 ijmp_list = ijmp;
4803         } else {
4804                 ir_node *block = get_label_block(statement->label);
4805                 ir_node *jmp   = new_Jmp();
4806                 add_immBlock_pred(block, jmp);
4807         }
4808         set_cur_block(NULL);
4809 }
4810
4811 static void asm_statement_to_firm(const asm_statement_t *statement)
4812 {
4813         bool needs_memory = false;
4814
4815         if (statement->is_volatile) {
4816                 needs_memory = true;
4817         }
4818
4819         size_t         n_clobbers = 0;
4820         asm_clobber_t *clobber    = statement->clobbers;
4821         for ( ; clobber != NULL; clobber = clobber->next) {
4822                 const char *clobber_str = clobber->clobber.begin;
4823
4824                 if (!be_is_valid_clobber(clobber_str)) {
4825                         errorf(&statement->base.source_position,
4826                                    "invalid clobber '%s' specified", clobber->clobber);
4827                         continue;
4828                 }
4829
4830                 if (strcmp(clobber_str, "memory") == 0) {
4831                         needs_memory = true;
4832                         continue;
4833                 }
4834
4835                 ident *id = new_id_from_str(clobber_str);
4836                 obstack_ptr_grow(&asm_obst, id);
4837                 ++n_clobbers;
4838         }
4839         assert(obstack_object_size(&asm_obst) == n_clobbers * sizeof(ident*));
4840         ident **clobbers = NULL;
4841         if (n_clobbers > 0) {
4842                 clobbers = obstack_finish(&asm_obst);
4843         }
4844
4845         size_t n_inputs  = 0;
4846         asm_argument_t *argument = statement->inputs;
4847         for ( ; argument != NULL; argument = argument->next)
4848                 n_inputs++;
4849         size_t n_outputs = 0;
4850         argument = statement->outputs;
4851         for ( ; argument != NULL; argument = argument->next)
4852                 n_outputs++;
4853
4854         unsigned next_pos = 0;
4855
4856         ir_node *ins[n_inputs + n_outputs + 1];
4857         size_t   in_size = 0;
4858
4859         ir_asm_constraint tmp_in_constraints[n_outputs];
4860
4861         const expression_t *out_exprs[n_outputs];
4862         ir_node            *out_addrs[n_outputs];
4863         size_t              out_size = 0;
4864
4865         argument = statement->outputs;
4866         for ( ; argument != NULL; argument = argument->next) {
4867                 const char *constraints = argument->constraints.begin;
4868                 asm_constraint_flags_t asm_flags
4869                         = be_parse_asm_constraints(constraints);
4870
4871                 if (asm_flags & ASM_CONSTRAINT_FLAG_NO_SUPPORT) {
4872                         warningf(&statement->base.source_position,
4873                                "some constraints in '%s' are not supported", constraints);
4874                 }
4875                 if (asm_flags & ASM_CONSTRAINT_FLAG_INVALID) {
4876                         errorf(&statement->base.source_position,
4877                                "some constraints in '%s' are invalid", constraints);
4878                         continue;
4879                 }
4880                 if (! (asm_flags & ASM_CONSTRAINT_FLAG_MODIFIER_WRITE)) {
4881                         errorf(&statement->base.source_position,
4882                                "no write flag specified for output constraints '%s'",
4883                                constraints);
4884                         continue;
4885                 }
4886
4887                 unsigned pos = next_pos++;
4888                 if ( (asm_flags & ASM_CONSTRAINT_FLAG_SUPPORTS_IMMEDIATE)
4889                                 || (asm_flags & ASM_CONSTRAINT_FLAG_SUPPORTS_REGISTER) ) {
4890                         expression_t *expr = argument->expression;
4891                         ir_node      *addr = expression_to_addr(expr);
4892                         /* in+output, construct an artifical same_as constraint on the
4893                          * input */
4894                         if (asm_flags & ASM_CONSTRAINT_FLAG_MODIFIER_READ) {
4895                                 char     buf[64];
4896                                 ir_node *value = get_value_from_lvalue(expr, addr);
4897
4898                                 snprintf(buf, sizeof(buf), "%u", pos);
4899
4900                                 ir_asm_constraint constraint;
4901                                 constraint.pos              = pos;
4902                                 constraint.constraint       = new_id_from_str(buf);
4903                                 constraint.mode             = get_ir_mode(expr->base.type);
4904                                 tmp_in_constraints[in_size] = constraint;
4905                                 ins[in_size] = value;
4906
4907                                 ++in_size;
4908                         }
4909
4910                         out_exprs[out_size] = expr;
4911                         out_addrs[out_size] = addr;
4912                         ++out_size;
4913                 } else if (asm_flags & ASM_CONSTRAINT_FLAG_SUPPORTS_MEMOP) {
4914                         /* pure memory ops need no input (but we have to make sure we
4915                          * attach to the memory) */
4916                         assert(! (asm_flags &
4917                                                 (ASM_CONSTRAINT_FLAG_SUPPORTS_IMMEDIATE
4918                                                  | ASM_CONSTRAINT_FLAG_SUPPORTS_REGISTER)));
4919                         needs_memory = true;
4920
4921                         /* we need to attach the address to the inputs */
4922                         expression_t *expr = argument->expression;
4923
4924                         ir_asm_constraint constraint;
4925                         constraint.pos              = pos;
4926                         constraint.constraint       = new_id_from_str(constraints);
4927                         constraint.mode             = NULL;
4928                         tmp_in_constraints[in_size] = constraint;
4929
4930                         ins[in_size]          = expression_to_addr(expr);
4931                         ++in_size;
4932                         continue;
4933                 } else {
4934                         errorf(&statement->base.source_position,
4935                                "only modifiers but no place set in constraints '%s'",
4936                                constraints);
4937                         continue;
4938                 }
4939
4940                 ir_asm_constraint constraint;
4941                 constraint.pos        = pos;
4942                 constraint.constraint = new_id_from_str(constraints);
4943                 constraint.mode       = get_ir_mode(argument->expression->base.type);
4944
4945                 obstack_grow(&asm_obst, &constraint, sizeof(constraint));
4946         }
4947         assert(obstack_object_size(&asm_obst)
4948                         == out_size * sizeof(ir_asm_constraint));
4949         ir_asm_constraint *output_constraints = obstack_finish(&asm_obst);
4950
4951
4952         obstack_grow(&asm_obst, tmp_in_constraints,
4953                      in_size * sizeof(tmp_in_constraints[0]));
4954         /* find and count input and output arguments */
4955         argument = statement->inputs;
4956         for ( ; argument != NULL; argument = argument->next) {
4957                 const char *constraints = argument->constraints.begin;
4958                 asm_constraint_flags_t asm_flags
4959                         = be_parse_asm_constraints(constraints);
4960
4961                 if (asm_flags & ASM_CONSTRAINT_FLAG_NO_SUPPORT) {
4962                         errorf(&statement->base.source_position,
4963                                "some constraints in '%s' are not supported", constraints);
4964                         continue;
4965                 }
4966                 if (asm_flags & ASM_CONSTRAINT_FLAG_INVALID) {
4967                         errorf(&statement->base.source_position,
4968                                "some constraints in '%s' are invalid", constraints);
4969                         continue;
4970                 }
4971                 if (asm_flags & ASM_CONSTRAINT_FLAG_MODIFIER_WRITE) {
4972                         errorf(&statement->base.source_position,
4973                                "write flag specified for input constraints '%s'",
4974                                constraints);
4975                         continue;
4976                 }
4977
4978                 ir_node *input;
4979                 if ( (asm_flags & ASM_CONSTRAINT_FLAG_SUPPORTS_IMMEDIATE)
4980                                 || (asm_flags & ASM_CONSTRAINT_FLAG_SUPPORTS_REGISTER) ) {
4981                         /* we can treat this as "normal" input */
4982                         input = expression_to_firm(argument->expression);
4983                 } else if (asm_flags & ASM_CONSTRAINT_FLAG_SUPPORTS_MEMOP) {
4984                         /* pure memory ops need no input (but we have to make sure we
4985                          * attach to the memory) */
4986                         assert(! (asm_flags &
4987                                                 (ASM_CONSTRAINT_FLAG_SUPPORTS_IMMEDIATE
4988                                                  | ASM_CONSTRAINT_FLAG_SUPPORTS_REGISTER)));
4989                         needs_memory = true;
4990                         input = expression_to_addr(argument->expression);
4991                 } else {
4992                         errorf(&statement->base.source_position,
4993                                "only modifiers but no place set in constraints '%s'",
4994                                constraints);
4995                         continue;
4996                 }
4997
4998                 ir_asm_constraint constraint;
4999                 constraint.pos        = next_pos++;
5000                 constraint.constraint = new_id_from_str(constraints);
5001                 constraint.mode       = get_irn_mode(input);
5002
5003                 obstack_grow(&asm_obst, &constraint, sizeof(constraint));
5004                 ins[in_size++] = input;
5005         }
5006
5007         if (needs_memory) {
5008                 ir_asm_constraint constraint;
5009                 constraint.pos        = next_pos++;
5010                 constraint.constraint = new_id_from_str("");
5011                 constraint.mode       = mode_M;
5012
5013                 obstack_grow(&asm_obst, &constraint, sizeof(constraint));
5014                 ins[in_size++] = get_store();
5015         }
5016
5017         assert(obstack_object_size(&asm_obst)
5018                         == in_size * sizeof(ir_asm_constraint));
5019         ir_asm_constraint *input_constraints = obstack_finish(&asm_obst);
5020
5021         /* create asm node */
5022         dbg_info *dbgi = get_dbg_info(&statement->base.source_position);
5023
5024         ident *asm_text = new_id_from_str(statement->asm_text.begin);
5025
5026         ir_node *node = new_d_ASM(dbgi, in_size, ins, input_constraints,
5027                                   out_size, output_constraints,
5028                                   n_clobbers, clobbers, asm_text);
5029
5030         if (statement->is_volatile) {
5031                 set_irn_pinned(node, op_pin_state_pinned);
5032         } else {
5033                 set_irn_pinned(node, op_pin_state_floats);
5034         }
5035
5036         /* create output projs & connect them */
5037         if (needs_memory) {
5038                 ir_node *projm = new_Proj(node, mode_M, out_size+1);
5039                 set_store(projm);
5040         }
5041
5042         size_t i;
5043         for (i = 0; i < out_size; ++i) {
5044                 const expression_t *out_expr = out_exprs[i];
5045                 long                pn       = i;
5046                 ir_mode            *mode     = get_ir_mode(out_expr->base.type);
5047                 ir_node            *proj     = new_Proj(node, mode, pn);
5048                 ir_node            *addr     = out_addrs[i];
5049
5050                 set_value_for_expression_addr(out_expr, proj, addr);
5051         }
5052 }
5053
5054 static void     ms_try_statement_to_firm(ms_try_statement_t *statement) {
5055         statement_to_firm(statement->try_statement);
5056         warningf(&statement->base.source_position, "structured exception handling ignored");
5057 }
5058
5059 static void     leave_statement_to_firm(leave_statement_t *statement) {
5060         errorf(&statement->base.source_position, "__leave not supported yet");
5061 }
5062
5063 /**
5064  * Transform a statement.
5065  */
5066 static void statement_to_firm(statement_t *statement)
5067 {
5068 #ifndef NDEBUG
5069         assert(!statement->base.transformed);
5070         statement->base.transformed = true;
5071 #endif
5072
5073         switch (statement->kind) {
5074         case STATEMENT_INVALID:
5075                 panic("invalid statement found");
5076         case STATEMENT_EMPTY:
5077                 /* nothing */
5078                 return;
5079         case STATEMENT_COMPOUND:
5080                 compound_statement_to_firm(&statement->compound);
5081                 return;
5082         case STATEMENT_RETURN:
5083                 return_statement_to_firm(&statement->returns);
5084                 return;
5085         case STATEMENT_EXPRESSION:
5086                 expression_statement_to_firm(&statement->expression);
5087                 return;
5088         case STATEMENT_IF:
5089                 if_statement_to_firm(&statement->ifs);
5090                 return;
5091         case STATEMENT_WHILE:
5092                 while_statement_to_firm(&statement->whiles);
5093                 return;
5094         case STATEMENT_DO_WHILE:
5095                 do_while_statement_to_firm(&statement->do_while);
5096                 return;
5097         case STATEMENT_DECLARATION:
5098                 declaration_statement_to_firm(&statement->declaration);
5099                 return;
5100         case STATEMENT_BREAK:
5101                 create_jump_statement(statement, get_break_label());
5102                 return;
5103         case STATEMENT_CONTINUE:
5104                 create_jump_statement(statement, continue_label);
5105                 return;
5106         case STATEMENT_SWITCH:
5107                 switch_statement_to_firm(&statement->switchs);
5108                 return;
5109         case STATEMENT_CASE_LABEL:
5110                 case_label_to_firm(&statement->case_label);
5111                 return;
5112         case STATEMENT_FOR:
5113                 for_statement_to_firm(&statement->fors);
5114                 return;
5115         case STATEMENT_LABEL:
5116                 label_to_firm(&statement->label);
5117                 return;
5118         case STATEMENT_GOTO:
5119                 goto_to_firm(&statement->gotos);
5120                 return;
5121         case STATEMENT_ASM:
5122                 asm_statement_to_firm(&statement->asms);
5123                 return;
5124         case STATEMENT_MS_TRY:
5125                 ms_try_statement_to_firm(&statement->ms_try);
5126                 return;
5127         case STATEMENT_LEAVE:
5128                 leave_statement_to_firm(&statement->leave);
5129                 return;
5130         }
5131         panic("statement not implemented");
5132 }
5133
5134 static int count_local_variables(const entity_t *entity,
5135                                  const entity_t *const last)
5136 {
5137         int count = 0;
5138         for (; entity != NULL; entity = entity->base.next) {
5139                 type_t *type;
5140                 bool    address_taken;
5141
5142                 if (entity->kind == ENTITY_VARIABLE) {
5143                         type          = skip_typeref(entity->declaration.type);
5144                         address_taken = entity->variable.address_taken;
5145                 } else if (entity->kind == ENTITY_PARAMETER) {
5146                         type          = skip_typeref(entity->declaration.type);
5147                         address_taken = entity->parameter.address_taken;
5148                 } else {
5149                         continue;
5150                 }
5151
5152                 if (!address_taken && is_type_scalar(type))
5153                         ++count;
5154
5155                 if (entity == last)
5156                         break;
5157         }
5158         return count;
5159 }
5160
5161 static void count_local_variables_in_stmt(statement_t *stmt, void *const env)
5162 {
5163         int *const count = env;
5164
5165         switch (stmt->kind) {
5166         case STATEMENT_DECLARATION: {
5167                 const declaration_statement_t *const decl_stmt = &stmt->declaration;
5168                 *count += count_local_variables(decl_stmt->declarations_begin,
5169                                 decl_stmt->declarations_end);
5170                 break;
5171         }
5172
5173         case STATEMENT_FOR:
5174                 *count += count_local_variables(stmt->fors.scope.entities, NULL);
5175                 break;
5176
5177         default:
5178                 break;
5179         }
5180 }
5181
5182 static int get_function_n_local_vars(entity_t *entity)
5183 {
5184         int count = 0;
5185
5186         /* count parameters */
5187         count += count_local_variables(entity->function.parameters.entities, NULL);
5188
5189         /* count local variables declared in body */
5190         walk_statements(entity->function.statement, count_local_variables_in_stmt,
5191                         &count);
5192         return count;
5193 }
5194
5195 static void initialize_function_parameters(entity_t *entity)
5196 {
5197         assert(entity->kind == ENTITY_FUNCTION);
5198         ir_graph *irg             = current_ir_graph;
5199         ir_node  *args            = get_irg_args(irg);
5200         ir_node  *start_block     = get_irg_start_block(irg);
5201         ir_type  *function_irtype = get_ir_type(entity->declaration.type);
5202
5203         int       n         = 0;
5204         entity_t *parameter = entity->function.parameters.entities;
5205         for ( ; parameter != NULL; parameter = parameter->base.next, ++n) {
5206                 assert(parameter->kind == ENTITY_PARAMETER);
5207                 assert(parameter->declaration.kind == DECLARATION_KIND_UNKNOWN);
5208                 type_t *type = skip_typeref(parameter->declaration.type);
5209
5210                 bool needs_entity = parameter->parameter.address_taken;
5211                 assert(!is_type_array(type));
5212                 if (is_type_compound(type)) {
5213                         needs_entity = true;
5214                 }
5215
5216                 if (needs_entity) {
5217                         ir_entity *entity = get_method_value_param_ent(function_irtype, n);
5218                         ident     *id     = new_id_from_str(parameter->base.symbol->string);
5219                         set_entity_ident(entity, id);
5220
5221                         parameter->declaration.kind
5222                                 = DECLARATION_KIND_PARAMETER_ENTITY;
5223                         parameter->parameter.v.entity = entity;
5224                         continue;
5225                 }
5226
5227                 ir_type *param_irtype = get_method_param_type(function_irtype, n);
5228                 ir_mode *param_mode   = get_type_mode(param_irtype);
5229
5230                 long     pn    = n;
5231                 ir_node *value = new_r_Proj(irg, start_block, args, param_mode, pn);
5232
5233                 ir_mode *mode = get_ir_mode(type);
5234                 value = create_conv(NULL, value, mode);
5235                 value = do_strict_conv(NULL, value);
5236
5237                 parameter->declaration.kind         = DECLARATION_KIND_PARAMETER;
5238                 parameter->parameter.v.value_number = next_value_number_function;
5239                 set_irg_loc_description(current_ir_graph, next_value_number_function,
5240                                         parameter);
5241                 ++next_value_number_function;
5242
5243                 set_value(parameter->parameter.v.value_number, value);
5244         }
5245 }
5246
5247 /**
5248  * Handle additional decl modifiers for IR-graphs
5249  *
5250  * @param irg            the IR-graph
5251  * @param dec_modifiers  additional modifiers
5252  */
5253 static void handle_decl_modifier_irg(ir_graph_ptr irg, decl_modifiers_t decl_modifiers)
5254 {
5255         if (decl_modifiers & DM_RETURNS_TWICE) {
5256                 /* TRUE if the declaration includes __attribute__((returns_twice)) */
5257                 set_irg_additional_property(irg, mtp_property_returns_twice);
5258         }
5259         if (decl_modifiers & DM_NORETURN) {
5260                 /* TRUE if the declaration includes the Microsoft
5261                    __declspec(noreturn) specifier. */
5262                 set_irg_additional_property(irg, mtp_property_noreturn);
5263         }
5264         if (decl_modifiers & DM_NOTHROW) {
5265                 /* TRUE if the declaration includes the Microsoft
5266                    __declspec(nothrow) specifier. */
5267                 set_irg_additional_property(irg, mtp_property_nothrow);
5268         }
5269         if (decl_modifiers & DM_NAKED) {
5270                 /* TRUE if the declaration includes the Microsoft
5271                    __declspec(naked) specifier. */
5272                 set_irg_additional_property(irg, mtp_property_naked);
5273         }
5274         if (decl_modifiers & DM_FORCEINLINE) {
5275                 /* TRUE if the declaration includes the
5276                    Microsoft __forceinline specifier. */
5277                 set_irg_inline_property(irg, irg_inline_forced);
5278         }
5279         if (decl_modifiers & DM_NOINLINE) {
5280                 /* TRUE if the declaration includes the Microsoft
5281                    __declspec(noinline) specifier. */
5282                 set_irg_inline_property(irg, irg_inline_forbidden);
5283         }
5284 }
5285
5286 static void add_function_pointer(ir_type *segment, ir_entity *method,
5287                                  const char *unique_template)
5288 {
5289         ir_type   *method_type  = get_entity_type(method);
5290         ident     *id           = id_unique(unique_template);
5291         ir_type   *ptr_type     = new_type_pointer(id, method_type, mode_P_code);
5292
5293         ident     *ide          = id_unique(unique_template);
5294         ir_entity *ptr          = new_entity(segment, ide, ptr_type);
5295         ir_graph  *irg          = get_const_code_irg();
5296         ir_node   *val          = new_rd_SymConst_addr_ent(NULL, irg, mode_P_code,
5297                                                            method, NULL);
5298
5299         set_entity_compiler_generated(ptr, 1);
5300         set_entity_variability(ptr, variability_constant);
5301         set_atomic_ent_value(ptr, val);
5302 }
5303
5304 /**
5305  * Generate possible IJmp branches to a given label block.
5306  */
5307 static void gen_ijmp_branches(ir_node *block) {
5308         ir_node *ijmp;
5309         for (ijmp = ijmp_list; ijmp != NULL; ijmp = get_irn_link(ijmp)) {
5310                 add_immBlock_pred(block, ijmp);
5311         }
5312 }
5313
5314 /**
5315  * Create code for a function.
5316  */
5317 static void create_function(entity_t *entity)
5318 {
5319         assert(entity->kind == ENTITY_FUNCTION);
5320         ir_entity *function_entity = get_function_entity(entity);
5321
5322         if (entity->function.statement == NULL)
5323                 return;
5324
5325         if (entity->declaration.modifiers & DM_CONSTRUCTOR) {
5326                 ir_type *segment = get_segment_type(IR_SEGMENT_CONSTRUCTORS);
5327                 add_function_pointer(segment, function_entity, "constructor_ptr.%u");
5328         }
5329         if (entity->declaration.modifiers & DM_DESTRUCTOR) {
5330                 ir_type *segment = get_segment_type(IR_SEGMENT_DESTRUCTORS);
5331                 add_function_pointer(segment, function_entity, "destructor_ptr.%u");
5332         }
5333
5334         current_function_entity = entity;
5335         current_function_name   = NULL;
5336         current_funcsig         = NULL;
5337
5338         assert(all_labels == NULL);
5339         all_labels = NEW_ARR_F(label_t *, 0);
5340         ijmp_list  = NULL;
5341
5342         int       n_local_vars = get_function_n_local_vars(entity);
5343         ir_graph *irg          = new_ir_graph(function_entity, n_local_vars);
5344
5345         ir_graph *old_current_function = current_function;
5346         current_function = irg;
5347
5348         set_irg_fp_model(irg, firm_opt.fp_model);
5349         tarval_enable_fp_ops((firm_opt.fp_model & fp_strict_algebraic) == 0);
5350         set_irn_dbg_info(get_irg_start_block(irg), get_entity_dbg_info(function_entity));
5351
5352         ir_node *first_block = get_cur_block();
5353
5354         /* set inline flags */
5355         if (entity->function.is_inline)
5356                 set_irg_inline_property(irg, irg_inline_recomended);
5357         handle_decl_modifier_irg(irg, entity->declaration.modifiers);
5358
5359         next_value_number_function = 0;
5360         initialize_function_parameters(entity);
5361
5362         statement_to_firm(entity->function.statement);
5363
5364         ir_node *end_block = get_irg_end_block(irg);
5365
5366         /* do we have a return statement yet? */
5367         if (get_cur_block() != NULL) {
5368                 type_t *type = skip_typeref(entity->declaration.type);
5369                 assert(is_type_function(type));
5370                 const function_type_t *func_type   = &type->function;
5371                 const type_t          *return_type
5372                         = skip_typeref(func_type->return_type);
5373
5374                 ir_node *ret;
5375                 if (is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
5376                         ret = new_Return(get_store(), 0, NULL);
5377                 } else {
5378                         ir_mode *mode;
5379                         if (is_type_scalar(return_type)) {
5380                                 mode = get_ir_mode(func_type->return_type);
5381                         } else {
5382                                 mode = mode_P_data;
5383                         }
5384
5385                         ir_node *in[1];
5386                         /* ยง5.1.2.2.3 main implicitly returns 0 */
5387                         if (is_main(entity)) {
5388                                 in[0] = new_Const(get_mode_null(mode));
5389                         } else {
5390                                 in[0] = new_Unknown(mode);
5391                         }
5392                         ret = new_Return(get_store(), 1, in);
5393                 }
5394                 add_immBlock_pred(end_block, ret);
5395         }
5396
5397         bool has_computed_gotos = false;
5398         for (int i = ARR_LEN(all_labels) - 1; i >= 0; --i) {
5399                 label_t *label = all_labels[i];
5400                 if (label->address_taken) {
5401                         gen_ijmp_branches(label->block);
5402                         has_computed_gotos = true;
5403                 }
5404                 mature_immBlock(label->block);
5405         }
5406         if (has_computed_gotos) {
5407                 /* if we have computed goto's in the function, we cannot inline it */
5408                 if (get_irg_inline_property(irg) >= irg_inline_recomended) {
5409                         warningf(&entity->base.source_position,
5410                                  "function '%Y' can never be inlined because it contains a computed goto",
5411                                  entity->base.symbol);
5412                 }
5413                 set_irg_inline_property(irg, irg_inline_forbidden);
5414         }
5415
5416         DEL_ARR_F(all_labels);
5417         all_labels = NULL;
5418
5419         mature_immBlock(first_block);
5420         mature_immBlock(end_block);
5421
5422         irg_finalize_cons(irg);
5423
5424         /* finalize the frame type */
5425         ir_type *frame_type = get_irg_frame_type(irg);
5426         int      n          = get_compound_n_members(frame_type);
5427         int      align_all  = 4;
5428         int      offset     = 0;
5429         for (int i = 0; i < n; ++i) {
5430                 ir_entity *entity      = get_compound_member(frame_type, i);
5431                 ir_type   *entity_type = get_entity_type(entity);
5432
5433                 int align = get_type_alignment_bytes(entity_type);
5434                 if (align > align_all)
5435                         align_all = align;
5436                 int misalign = 0;
5437                 if (align > 0) {
5438                         misalign  = offset % align;
5439                         if (misalign > 0) {
5440                                 offset += align - misalign;
5441                         }
5442                 }
5443
5444                 set_entity_offset(entity, offset);
5445                 offset += get_type_size_bytes(entity_type);
5446         }
5447         set_type_size_bytes(frame_type, offset);
5448         set_type_alignment_bytes(frame_type, align_all);
5449
5450         irg_vrfy(irg);
5451         current_function = old_current_function;
5452
5453         /* create inner functions */
5454         entity_t *inner;
5455         for (inner = next_inner_function(); inner != NULL;
5456              inner = next_inner_function()) {
5457                 create_function(inner);
5458         }
5459 }
5460
5461 static void scope_to_firm(scope_t *scope)
5462 {
5463         /* first pass: create declarations */
5464         entity_t *entity = scope->entities;
5465         for ( ; entity != NULL; entity = entity->base.next) {
5466                 if (entity->base.symbol == NULL)
5467                         continue;
5468
5469                 if (entity->kind == ENTITY_FUNCTION) {
5470                         get_function_entity(entity);
5471                 } else if (entity->kind == ENTITY_VARIABLE) {
5472                         create_global_variable(entity);
5473                 }
5474         }
5475
5476         /* second pass: create code/initializers */
5477         entity = scope->entities;
5478         for ( ; entity != NULL; entity = entity->base.next) {
5479                 if (entity->base.symbol == NULL)
5480                         continue;
5481
5482                 if (entity->kind == ENTITY_FUNCTION) {
5483                         create_function(entity);
5484                 } else if (entity->kind == ENTITY_VARIABLE) {
5485                         assert(entity->declaration.kind
5486                                         == DECLARATION_KIND_GLOBAL_VARIABLE);
5487                         current_ir_graph = get_const_code_irg();
5488                         create_variable_initializer(entity);
5489                 }
5490         }
5491 }
5492
5493 void init_ast2firm(void)
5494 {
5495         obstack_init(&asm_obst);
5496         init_atomic_modes();
5497
5498         /* OS option must be set to the backend */
5499         switch (firm_opt.os_support) {
5500         case OS_SUPPORT_MINGW:
5501                 create_ld_ident = create_name_win32;
5502                 break;
5503         case OS_SUPPORT_LINUX:
5504                 create_ld_ident = create_name_linux_elf;
5505                 break;
5506         case OS_SUPPORT_MACHO:
5507                 create_ld_ident = create_name_macho;
5508                 break;
5509         default:
5510                 panic("unexpected OS support mode");
5511         }
5512
5513         /* create idents for all known runtime functions */
5514         for (size_t i = 0; i < sizeof(rts_data) / sizeof(rts_data[0]); ++i) {
5515                 rts_idents[i] = new_id_from_str(rts_data[i].name);
5516         }
5517
5518         entitymap_init(&entitymap);
5519 }
5520
5521 static void init_ir_types(void)
5522 {
5523         static int ir_types_initialized = 0;
5524         if (ir_types_initialized)
5525                 return;
5526         ir_types_initialized = 1;
5527
5528         ir_type_int        = get_ir_type(type_int);
5529         ir_type_const_char = get_ir_type(type_const_char);
5530         ir_type_wchar_t    = get_ir_type(type_wchar_t);
5531         ir_type_void       = get_ir_type(type_void);
5532 }
5533
5534 void exit_ast2firm(void)
5535 {
5536         entitymap_destroy(&entitymap);
5537         obstack_free(&asm_obst, NULL);
5538 }
5539
5540 static void global_asm_to_firm(statement_t *s)
5541 {
5542         for (; s != NULL; s = s->base.next) {
5543                 assert(s->kind == STATEMENT_ASM);
5544
5545                 char const *const text = s->asms.asm_text.begin;
5546                 size_t            size = s->asms.asm_text.size;
5547
5548                 /* skip the last \0 */
5549                 if (text[size - 1] == '\0')
5550                         --size;
5551
5552                 ident *const id = new_id_from_chars(text, size);
5553                 add_irp_asm(id);
5554         }
5555 }
5556
5557 void translation_unit_to_firm(translation_unit_t *unit)
5558 {
5559         /* just to be sure */
5560         continue_label           = NULL;
5561         break_label              = NULL;
5562         current_switch_cond      = NULL;
5563         current_translation_unit = unit;
5564
5565         init_ir_types();
5566         inner_functions = NEW_ARR_F(entity_t *, 0);
5567
5568         scope_to_firm(&unit->scope);
5569         global_asm_to_firm(unit->global_asm);
5570
5571         DEL_ARR_F(inner_functions);
5572         inner_functions  = NULL;
5573
5574         current_ir_graph         = NULL;
5575         current_translation_unit = NULL;
5576 }