Better show something (syntactically invalid) when printing a for-statement with...
[cparser] / ast.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include "ast_t.h"
23 #include "symbol_t.h"
24 #include "type_t.h"
25 #include "parser.h"
26 #include "lang_features.h"
27 #include "entity_t.h"
28
29 #include <assert.h>
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <ctype.h>
33
34 #if defined(__INTEL_COMPILER)
35 #include <mathimf.h>
36 #elif defined(__CYGWIN__)
37 #include "win32/cygwin_math_ext.h"
38 #else
39 #include <math.h>
40 #endif
41
42 #include "adt/error.h"
43 #include "adt/util.h"
44
45 struct obstack ast_obstack;
46
47 static FILE *out;
48 static int   indent;
49
50 /** If set, implicit casts are printed. */
51 bool print_implicit_casts = false;
52
53 /** If set parenthesis are printed to indicate operator precedence. */
54 bool print_parenthesis = false;
55
56 static void print_statement(const statement_t *statement);
57 static void print_expression_prec(const expression_t *expression, unsigned prec);
58
59 void change_indent(int delta)
60 {
61         indent += delta;
62         assert(indent >= 0);
63 }
64
65 void print_indent(void)
66 {
67         for (int i = 0; i < indent; ++i)
68                 fputc('\t', out);
69 }
70
71 /**
72  * Returns 1 if a given precedence level has right-to-left
73  * associativity, else 0.
74  *
75  * @param precedence   the operator precedence
76  */
77 static int right_to_left(unsigned precedence)
78 {
79         switch (precedence) {
80                 case PREC_ASSIGNMENT:
81                 case PREC_CONDITIONAL:
82                 case PREC_UNARY:
83                         return 1;
84
85                 default:
86                         return 0;
87         }
88 }
89
90 /**
91  * Return the precedence of an expression given by its kind.
92  *
93  * @param kind   the expression kind
94  */
95 static unsigned get_expression_precedence(expression_kind_t kind)
96 {
97         static const unsigned prec[] = {
98                 [EXPR_UNKNOWN]                    = PREC_PRIMARY,
99                 [EXPR_INVALID]                    = PREC_PRIMARY,
100                 [EXPR_REFERENCE]                  = PREC_PRIMARY,
101                 [EXPR_REFERENCE_ENUM_VALUE]       = PREC_PRIMARY,
102                 [EXPR_CHARACTER_CONSTANT]         = PREC_PRIMARY,
103                 [EXPR_WIDE_CHARACTER_CONSTANT]    = PREC_PRIMARY,
104                 [EXPR_CONST]                      = PREC_PRIMARY,
105                 [EXPR_STRING_LITERAL]             = PREC_PRIMARY,
106                 [EXPR_WIDE_STRING_LITERAL]        = PREC_PRIMARY,
107                 [EXPR_COMPOUND_LITERAL]           = PREC_UNARY,
108                 [EXPR_CALL]                       = PREC_POSTFIX,
109                 [EXPR_CONDITIONAL]                = PREC_CONDITIONAL,
110                 [EXPR_SELECT]                     = PREC_POSTFIX,
111                 [EXPR_ARRAY_ACCESS]               = PREC_POSTFIX,
112                 [EXPR_SIZEOF]                     = PREC_UNARY,
113                 [EXPR_CLASSIFY_TYPE]              = PREC_UNARY,
114                 [EXPR_ALIGNOF]                    = PREC_UNARY,
115
116                 [EXPR_FUNCNAME]                   = PREC_PRIMARY,
117                 [EXPR_BUILTIN_SYMBOL]             = PREC_PRIMARY,
118                 [EXPR_BUILTIN_CONSTANT_P]         = PREC_PRIMARY,
119                 [EXPR_BUILTIN_TYPES_COMPATIBLE_P] = PREC_PRIMARY,
120                 [EXPR_OFFSETOF]                   = PREC_PRIMARY,
121                 [EXPR_VA_START]                   = PREC_PRIMARY,
122                 [EXPR_VA_ARG]                     = PREC_PRIMARY,
123                 [EXPR_STATEMENT]                  = PREC_PRIMARY,
124                 [EXPR_LABEL_ADDRESS]              = PREC_PRIMARY,
125
126                 [EXPR_UNARY_NEGATE]               = PREC_UNARY,
127                 [EXPR_UNARY_PLUS]                 = PREC_UNARY,
128                 [EXPR_UNARY_BITWISE_NEGATE]       = PREC_UNARY,
129                 [EXPR_UNARY_NOT]                  = PREC_UNARY,
130                 [EXPR_UNARY_DEREFERENCE]          = PREC_UNARY,
131                 [EXPR_UNARY_TAKE_ADDRESS]         = PREC_UNARY,
132                 [EXPR_UNARY_POSTFIX_INCREMENT]    = PREC_POSTFIX,
133                 [EXPR_UNARY_POSTFIX_DECREMENT]    = PREC_POSTFIX,
134                 [EXPR_UNARY_PREFIX_INCREMENT]     = PREC_UNARY,
135                 [EXPR_UNARY_PREFIX_DECREMENT]     = PREC_UNARY,
136                 [EXPR_UNARY_CAST]                 = PREC_UNARY,
137                 [EXPR_UNARY_CAST_IMPLICIT]        = PREC_UNARY,
138                 [EXPR_UNARY_ASSUME]               = PREC_PRIMARY,
139                 [EXPR_UNARY_DELETE]               = PREC_UNARY,
140                 [EXPR_UNARY_DELETE_ARRAY]         = PREC_UNARY,
141                 [EXPR_UNARY_THROW]                = PREC_ASSIGNMENT,
142
143                 [EXPR_BINARY_ADD]                 = PREC_ADDITIVE,
144                 [EXPR_BINARY_SUB]                 = PREC_ADDITIVE,
145                 [EXPR_BINARY_MUL]                 = PREC_MULTIPLICATIVE,
146                 [EXPR_BINARY_DIV]                 = PREC_MULTIPLICATIVE,
147                 [EXPR_BINARY_MOD]                 = PREC_MULTIPLICATIVE,
148                 [EXPR_BINARY_EQUAL]               = PREC_EQUALITY,
149                 [EXPR_BINARY_NOTEQUAL]            = PREC_EQUALITY,
150                 [EXPR_BINARY_LESS]                = PREC_RELATIONAL,
151                 [EXPR_BINARY_LESSEQUAL]           = PREC_RELATIONAL,
152                 [EXPR_BINARY_GREATER]             = PREC_RELATIONAL,
153                 [EXPR_BINARY_GREATEREQUAL]        = PREC_RELATIONAL,
154                 [EXPR_BINARY_BITWISE_AND]         = PREC_AND,
155                 [EXPR_BINARY_BITWISE_OR]          = PREC_OR,
156                 [EXPR_BINARY_BITWISE_XOR]         = PREC_XOR,
157                 [EXPR_BINARY_LOGICAL_AND]         = PREC_LOGICAL_AND,
158                 [EXPR_BINARY_LOGICAL_OR]          = PREC_LOGICAL_OR,
159                 [EXPR_BINARY_SHIFTLEFT]           = PREC_SHIFT,
160                 [EXPR_BINARY_SHIFTRIGHT]          = PREC_SHIFT,
161                 [EXPR_BINARY_ASSIGN]              = PREC_ASSIGNMENT,
162                 [EXPR_BINARY_MUL_ASSIGN]          = PREC_ASSIGNMENT,
163                 [EXPR_BINARY_DIV_ASSIGN]          = PREC_ASSIGNMENT,
164                 [EXPR_BINARY_MOD_ASSIGN]          = PREC_ASSIGNMENT,
165                 [EXPR_BINARY_ADD_ASSIGN]          = PREC_ASSIGNMENT,
166                 [EXPR_BINARY_SUB_ASSIGN]          = PREC_ASSIGNMENT,
167                 [EXPR_BINARY_SHIFTLEFT_ASSIGN]    = PREC_ASSIGNMENT,
168                 [EXPR_BINARY_SHIFTRIGHT_ASSIGN]   = PREC_ASSIGNMENT,
169                 [EXPR_BINARY_BITWISE_AND_ASSIGN]  = PREC_ASSIGNMENT,
170                 [EXPR_BINARY_BITWISE_XOR_ASSIGN]  = PREC_ASSIGNMENT,
171                 [EXPR_BINARY_BITWISE_OR_ASSIGN]   = PREC_ASSIGNMENT,
172                 [EXPR_BINARY_COMMA]               = PREC_EXPRESSION,
173
174                 [EXPR_BINARY_ISGREATER]           = PREC_PRIMARY,
175                 [EXPR_BINARY_ISGREATEREQUAL]      = PREC_PRIMARY,
176                 [EXPR_BINARY_ISLESS]              = PREC_PRIMARY,
177                 [EXPR_BINARY_ISLESSEQUAL]         = PREC_PRIMARY,
178                 [EXPR_BINARY_ISLESSGREATER]       = PREC_PRIMARY,
179                 [EXPR_BINARY_ISUNORDERED]         = PREC_PRIMARY
180         };
181         assert((size_t)kind < lengthof(prec));
182         unsigned res = prec[kind];
183
184         assert(res != PREC_BOTTOM);
185         return res;
186 }
187
188 /**
189  * Print a constant expression.
190  *
191  * @param cnst  the constant expression
192  */
193 static void print_const(const const_expression_t *cnst)
194 {
195         if (cnst->base.type == NULL)
196                 return;
197
198         const type_t *const type = skip_typeref(cnst->base.type);
199
200         if (is_type_atomic(type, ATOMIC_TYPE_BOOL)) {
201                 fputs(cnst->v.int_value ? "true" : "false", out);
202         } else if (is_type_integer(type)) {
203                 fprintf(out, "%lld", cnst->v.int_value);
204         } else if (is_type_float(type)) {
205                 long double const val = cnst->v.float_value;
206 #ifdef _WIN32
207                 /* ARG, no way to print long double */
208                 fprintf(out, "%.20g", (double)val);
209 #else
210                 fprintf(out, "%.20Lg", val);
211 #endif
212                 if (isfinite(val) && truncl(val) == val)
213                         fputs(".0", out);
214         } else {
215                 panic("unknown constant");
216         }
217
218         char const* suffix;
219         switch (type->atomic.akind) {
220                 case ATOMIC_TYPE_UINT:        suffix = "U";   break;
221                 case ATOMIC_TYPE_LONG:        suffix = "L";   break;
222                 case ATOMIC_TYPE_ULONG:       suffix = "UL";  break;
223                 case ATOMIC_TYPE_LONGLONG:    suffix = "LL";  break;
224                 case ATOMIC_TYPE_ULONGLONG:   suffix = "ULL"; break;
225                 case ATOMIC_TYPE_FLOAT:       suffix = "F";   break;
226                 case ATOMIC_TYPE_LONG_DOUBLE: suffix = "L";   break;
227
228                 default: return;
229         }
230         fputs(suffix, out);
231 }
232
233 /**
234  * Print a quoted string constant.
235  *
236  * @param string  the string constant
237  * @param border  the border char
238  * @param skip    number of chars to skip at the end
239  */
240 static void print_quoted_string(const string_t *const string, char border, int skip)
241 {
242         fputc(border, out);
243         const char *end = string->begin + string->size - skip;
244         for (const char *c = string->begin; c != end; ++c) {
245                 unsigned char const tc = *c;
246                 if (tc == border) {
247                         fputc('\\', out);
248                 }
249                 switch (tc) {
250                 case '\\':  fputs("\\\\", out); break;
251                 case '\a':  fputs("\\a", out); break;
252                 case '\b':  fputs("\\b", out); break;
253                 case '\f':  fputs("\\f", out); break;
254                 case '\n':  fputs("\\n", out); break;
255                 case '\r':  fputs("\\r", out); break;
256                 case '\t':  fputs("\\t", out); break;
257                 case '\v':  fputs("\\v", out); break;
258                 case '\?':  fputs("\\?", out); break;
259                 case 27:
260                         if (c_mode & _GNUC) {
261                                 fputs("\\e", out); break;
262                         }
263                         /* FALLTHROUGH */
264                 default:
265                         if (tc < 0x80 && !isprint(tc)) {
266                                 fprintf(out, "\\%03o", (unsigned)tc);
267                         } else {
268                                 fputc(tc, out);
269                         }
270                         break;
271                 }
272         }
273         fputc(border, out);
274 }
275
276 /**
277  * Prints a wide string literal expression.
278  *
279  * @param wstr    the wide string literal expression
280  * @param border  the border char
281  * @param skip    number of chars to skip at the end
282  */
283 static void print_quoted_wide_string(const wide_string_t *const wstr,
284                                      char border, int skip)
285 {
286         fputc('L', out);
287         fputc(border, out);
288         const wchar_rep_t *end = wstr->begin + wstr->size - skip;
289         for (const wchar_rep_t *c = wstr->begin; c != end; ++c) {
290                 switch (*c) {
291                         case L'\"':  fputs("\\\"", out); break;
292                         case L'\\':  fputs("\\\\", out); break;
293                         case L'\a':  fputs("\\a",  out); break;
294                         case L'\b':  fputs("\\b",  out); break;
295                         case L'\f':  fputs("\\f",  out); break;
296                         case L'\n':  fputs("\\n",  out); break;
297                         case L'\r':  fputs("\\r",  out); break;
298                         case L'\t':  fputs("\\t",  out); break;
299                         case L'\v':  fputs("\\v",  out); break;
300                         case L'\?':  fputs("\\?",  out); break;
301                         case 27:
302                                 if (c_mode & _GNUC) {
303                                         fputs("\\e", out); break;
304                                 }
305                                 /* FALLTHROUGH */
306                         default: {
307                                 const unsigned tc = *c;
308                                 if (tc < 0x80U) {
309                                         if (isprint(*c)) {
310                                                 fputc(*c, out);
311                                         } else {
312                                                 fprintf(out, "\\%03o", tc);
313                                         }
314                                 } else if (tc < 0x800) {
315                                         fputc(0xC0 | (tc >> 6),   out);
316                                         fputc(0x80 | (tc & 0x3F), out);
317                                 } else if (tc < 0x10000) {
318                                         fputc(0xE0 | ( tc >> 12),         out);
319                                         fputc(0x80 | ((tc >>  6) & 0x3F), out);
320                                         fputc(0x80 | ( tc        & 0x3F), out);
321                                 } else {
322                                         fputc(0xF0 | ( tc >> 18),         out);
323                                         fputc(0x80 | ((tc >> 12) & 0x3F), out);
324                                         fputc(0x80 | ((tc >>  6) & 0x3F), out);
325                                         fputc(0x80 | ( tc        & 0x3F), out);
326                                 }
327                         }
328                 }
329         }
330         fputc(border, out);
331 }
332
333 /**
334  * Print a constant character expression.
335  *
336  * @param cnst  the constant character expression
337  */
338 static void print_character_constant(const const_expression_t *cnst)
339 {
340         print_quoted_string(&cnst->v.character, '\'', 0);
341 }
342
343 static void print_wide_character_constant(const const_expression_t *cnst)
344 {
345         print_quoted_wide_string(&cnst->v.wide_character, '\'', 0);
346 }
347
348 /**
349  * Prints a string literal expression.
350  *
351  * @param string_literal  the string literal expression
352  */
353 static void print_string_literal(
354                 const string_literal_expression_t *string_literal)
355 {
356         print_quoted_string(&string_literal->value, '"', 1);
357 }
358
359 /**
360  * Prints a predefined symbol.
361  */
362 static void print_funcname(const funcname_expression_t *funcname)
363 {
364         const char *s = "";
365         switch (funcname->kind) {
366         case FUNCNAME_FUNCTION:        s = (c_mode & _C99) ? "__func__" : "__FUNCTION__"; break;
367         case FUNCNAME_PRETTY_FUNCTION: s = "__PRETTY_FUNCTION__"; break;
368         case FUNCNAME_FUNCSIG:         s = "__FUNCSIG__"; break;
369         case FUNCNAME_FUNCDNAME:       s = "__FUNCDNAME__"; break;
370         }
371         fputs(s, out);
372 }
373
374 static void print_wide_string_literal(
375         const wide_string_literal_expression_t *const wstr)
376 {
377         print_quoted_wide_string(&wstr->value, '"', 1);
378 }
379
380 static void print_compound_literal(
381                 const compound_literal_expression_t *expression)
382 {
383         fputc('(', out);
384         print_type(expression->type);
385         fputc(')', out);
386         print_initializer(expression->initializer);
387 }
388
389 static void print_assignment_expression(const expression_t *const expr)
390 {
391         print_expression_prec(expr, PREC_ASSIGNMENT);
392 }
393
394 /**
395  * Prints a call expression.
396  *
397  * @param call  the call expression
398  */
399 static void print_call_expression(const call_expression_t *call)
400 {
401         unsigned prec = get_expression_precedence(call->base.kind);
402         print_expression_prec(call->function, prec);
403         fputc('(', out);
404         call_argument_t *argument = call->arguments;
405         int              first    = 1;
406         while (argument != NULL) {
407                 if (!first) {
408                         fputs(", ", out);
409                 } else {
410                         first = 0;
411                 }
412                 print_assignment_expression(argument->expression);
413
414                 argument = argument->next;
415         }
416         fputc(')', out);
417 }
418
419 /**
420  * Prints a binary expression.
421  *
422  * @param binexpr   the binary expression
423  */
424 static void print_binary_expression(const binary_expression_t *binexpr)
425 {
426         unsigned prec = get_expression_precedence(binexpr->base.kind);
427         int      r2l  = right_to_left(prec);
428
429         print_expression_prec(binexpr->left, prec + r2l);
430         char const* op;
431         switch (binexpr->base.kind) {
432         case EXPR_BINARY_COMMA:              op = ", ";    break;
433         case EXPR_BINARY_ASSIGN:             op = " = ";   break;
434         case EXPR_BINARY_ADD:                op = " + ";   break;
435         case EXPR_BINARY_SUB:                op = " - ";   break;
436         case EXPR_BINARY_MUL:                op = " * ";   break;
437         case EXPR_BINARY_MOD:                op = " % ";   break;
438         case EXPR_BINARY_DIV:                op = " / ";   break;
439         case EXPR_BINARY_BITWISE_OR:         op = " | ";   break;
440         case EXPR_BINARY_BITWISE_AND:        op = " & ";   break;
441         case EXPR_BINARY_BITWISE_XOR:        op = " ^ ";   break;
442         case EXPR_BINARY_LOGICAL_OR:         op = " || ";  break;
443         case EXPR_BINARY_LOGICAL_AND:        op = " && ";  break;
444         case EXPR_BINARY_NOTEQUAL:           op = " != ";  break;
445         case EXPR_BINARY_EQUAL:              op = " == ";  break;
446         case EXPR_BINARY_LESS:               op = " < ";   break;
447         case EXPR_BINARY_LESSEQUAL:          op = " <= ";  break;
448         case EXPR_BINARY_GREATER:            op = " > ";   break;
449         case EXPR_BINARY_GREATEREQUAL:       op = " >= ";  break;
450         case EXPR_BINARY_SHIFTLEFT:          op = " << ";  break;
451         case EXPR_BINARY_SHIFTRIGHT:         op = " >> ";  break;
452
453         case EXPR_BINARY_ADD_ASSIGN:         op = " += ";  break;
454         case EXPR_BINARY_SUB_ASSIGN:         op = " -= ";  break;
455         case EXPR_BINARY_MUL_ASSIGN:         op = " *= ";  break;
456         case EXPR_BINARY_MOD_ASSIGN:         op = " %= ";  break;
457         case EXPR_BINARY_DIV_ASSIGN:         op = " /= ";  break;
458         case EXPR_BINARY_BITWISE_OR_ASSIGN:  op = " |= ";  break;
459         case EXPR_BINARY_BITWISE_AND_ASSIGN: op = " &= ";  break;
460         case EXPR_BINARY_BITWISE_XOR_ASSIGN: op = " ^= ";  break;
461         case EXPR_BINARY_SHIFTLEFT_ASSIGN:   op = " <<= "; break;
462         case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  op = " >>= "; break;
463         default: panic("invalid binexpression found");
464         }
465         fputs(op, out);
466         print_expression_prec(binexpr->right, prec + 1 - r2l);
467 }
468
469 /**
470  * Prints an unary expression.
471  *
472  * @param unexpr   the unary expression
473  */
474 static void print_unary_expression(const unary_expression_t *unexpr)
475 {
476         unsigned prec = get_expression_precedence(unexpr->base.kind);
477         switch (unexpr->base.kind) {
478         case EXPR_UNARY_NEGATE:           fputc('-',          out); break;
479         case EXPR_UNARY_PLUS:             fputc('+',          out); break;
480         case EXPR_UNARY_NOT:              fputc('!',          out); break;
481         case EXPR_UNARY_BITWISE_NEGATE:   fputc('~',          out); break;
482         case EXPR_UNARY_PREFIX_INCREMENT: fputs("++",         out); break;
483         case EXPR_UNARY_PREFIX_DECREMENT: fputs("--",         out); break;
484         case EXPR_UNARY_DEREFERENCE:      fputc('*',          out); break;
485         case EXPR_UNARY_TAKE_ADDRESS:     fputc('&',          out); break;
486         case EXPR_UNARY_DELETE:           fputs("delete ",    out); break;
487         case EXPR_UNARY_DELETE_ARRAY:     fputs("delete [] ", out); break;
488
489         case EXPR_UNARY_POSTFIX_INCREMENT:
490                 print_expression_prec(unexpr->value, prec);
491                 fputs("++", out);
492                 return;
493         case EXPR_UNARY_POSTFIX_DECREMENT:
494                 print_expression_prec(unexpr->value, prec);
495                 fputs("--", out);
496                 return;
497         case EXPR_UNARY_CAST_IMPLICIT:
498         case EXPR_UNARY_CAST:
499                 fputc('(', out);
500                 print_type(unexpr->base.type);
501                 fputc(')', out);
502                 break;
503         case EXPR_UNARY_ASSUME:
504                 fputs("__assume(", out);
505                 print_assignment_expression(unexpr->value);
506                 fputc(')', out);
507                 return;
508
509         case EXPR_UNARY_THROW:
510                 if (unexpr->value == NULL) {
511                         fputs("throw", out);
512                         return;
513                 }
514                 fputs("throw ", out);
515                 break;
516
517         default:
518                 panic("invalid unary expression found");
519         }
520         print_expression_prec(unexpr->value, prec);
521 }
522
523 /**
524  * Prints a reference expression.
525  *
526  * @param ref   the reference expression
527  */
528 static void print_reference_expression(const reference_expression_t *ref)
529 {
530         fputs(ref->entity->base.symbol->string, out);
531 }
532
533 /**
534  * Prints a label address expression.
535  *
536  * @param ref   the reference expression
537  */
538 static void print_label_address_expression(const label_address_expression_t *le)
539 {
540         fprintf(out, "&&%s", le->label->base.symbol->string);
541 }
542
543 /**
544  * Prints an array expression.
545  *
546  * @param expression   the array expression
547  */
548 static void print_array_expression(const array_access_expression_t *expression)
549 {
550         unsigned prec = get_expression_precedence(expression->base.kind);
551         if (!expression->flipped) {
552                 print_expression_prec(expression->array_ref, prec);
553                 fputc('[', out);
554                 print_expression(expression->index);
555                 fputc(']', out);
556         } else {
557                 print_expression_prec(expression->index, prec);
558                 fputc('[', out);
559                 print_expression(expression->array_ref);
560                 fputc(']', out);
561         }
562 }
563
564 /**
565  * Prints a typeproperty expression (sizeof or __alignof__).
566  *
567  * @param expression   the type property expression
568  */
569 static void print_typeprop_expression(const typeprop_expression_t *expression)
570 {
571         if (expression->base.kind == EXPR_SIZEOF) {
572                 fputs("sizeof", out);
573         } else {
574                 assert(expression->base.kind == EXPR_ALIGNOF);
575                 fputs("__alignof__", out);
576         }
577         if (expression->tp_expression != NULL) {
578                 /* PREC_TOP: always print the '()' here, sizeof x is right but unusual */
579                 print_expression_prec(expression->tp_expression, PREC_TOP);
580         } else {
581                 fputc('(', out);
582                 print_type(expression->type);
583                 fputc(')', out);
584         }
585 }
586
587 /**
588  * Prints an builtin symbol.
589  *
590  * @param expression   the builtin symbol expression
591  */
592 static void print_builtin_symbol(const builtin_symbol_expression_t *expression)
593 {
594         fputs(expression->symbol->string, out);
595 }
596
597 /**
598  * Prints a builtin constant expression.
599  *
600  * @param expression   the builtin constant expression
601  */
602 static void print_builtin_constant(const builtin_constant_expression_t *expression)
603 {
604         fputs("__builtin_constant_p(", out);
605         print_assignment_expression(expression->value);
606         fputc(')', out);
607 }
608
609 /**
610  * Prints a builtin types compatible expression.
611  *
612  * @param expression   the builtin types compatible expression
613  */
614 static void print_builtin_types_compatible(
615                 const builtin_types_compatible_expression_t *expression)
616 {
617         fputs("__builtin_types_compatible_p(", out);
618         print_type(expression->left);
619         fputs(", ", out);
620         print_type(expression->right);
621         fputc(')', out);
622 }
623
624 /**
625  * Prints a conditional expression.
626  *
627  * @param expression   the conditional expression
628  */
629 static void print_conditional(const conditional_expression_t *expression)
630 {
631         print_expression_prec(expression->condition, PREC_LOGICAL_OR);
632         fputs(" ? ", out);
633         if (expression->true_expression != NULL) {
634                 print_expression_prec(expression->true_expression, PREC_EXPRESSION);
635                 fputs(" : ", out);
636         } else {
637                 fputs(": ", out);
638         }
639         precedence_t prec = c_mode & _CXX ? PREC_ASSIGNMENT : PREC_CONDITIONAL;
640         print_expression_prec(expression->false_expression, prec);
641 }
642
643 /**
644  * Prints a va_start expression.
645  *
646  * @param expression   the va_start expression
647  */
648 static void print_va_start(const va_start_expression_t *const expression)
649 {
650         fputs("__builtin_va_start(", out);
651         print_assignment_expression(expression->ap);
652         fputs(", ", out);
653         fputs(expression->parameter->base.base.symbol->string, out);
654         fputc(')', out);
655 }
656
657 /**
658  * Prints a va_arg expression.
659  *
660  * @param expression   the va_arg expression
661  */
662 static void print_va_arg(const va_arg_expression_t *expression)
663 {
664         fputs("__builtin_va_arg(", out);
665         print_assignment_expression(expression->ap);
666         fputs(", ", out);
667         print_type(expression->base.type);
668         fputc(')', out);
669 }
670
671 /**
672  * Prints a select expression (. or ->).
673  *
674  * @param expression   the select expression
675  */
676 static void print_select(const select_expression_t *expression)
677 {
678         unsigned prec = get_expression_precedence(expression->base.kind);
679         print_expression_prec(expression->compound, prec);
680         if (is_type_pointer(skip_typeref(expression->compound->base.type))) {
681                 fputs("->", out);
682         } else {
683                 fputc('.', out);
684         }
685         fputs(expression->compound_entry->base.symbol->string, out);
686 }
687
688 /**
689  * Prints a type classify expression.
690  *
691  * @param expr   the type classify expression
692  */
693 static void print_classify_type_expression(
694         const classify_type_expression_t *const expr)
695 {
696         fputs("__builtin_classify_type(", out);
697         print_assignment_expression(expr->type_expression);
698         fputc(')', out);
699 }
700
701 /**
702  * Prints a designator.
703  *
704  * @param designator  the designator
705  */
706 static void print_designator(const designator_t *designator)
707 {
708         for ( ; designator != NULL; designator = designator->next) {
709                 if (designator->symbol == NULL) {
710                         fputc('[', out);
711                         print_expression(designator->array_index);
712                         fputc(']', out);
713                 } else {
714                         fputc('.', out);
715                         fputs(designator->symbol->string, out);
716                 }
717         }
718 }
719
720 /**
721  * Prints an offsetof expression.
722  *
723  * @param expression   the offset expression
724  */
725 static void print_offsetof_expression(const offsetof_expression_t *expression)
726 {
727         fputs("__builtin_offsetof", out);
728         fputc('(', out);
729         print_type(expression->type);
730         fputc(',', out);
731         print_designator(expression->designator);
732         fputc(')', out);
733 }
734
735 /**
736  * Prints a statement expression.
737  *
738  * @param expression   the statement expression
739  */
740 static void print_statement_expression(const statement_expression_t *expression)
741 {
742         fputc('(', out);
743         print_statement(expression->statement);
744         fputc(')', out);
745 }
746
747 /**
748  * Prints an expression with parenthesis if needed.
749  *
750  * @param expression  the expression to print
751  * @param top_prec    the precedence of the user of this expression.
752  */
753 static void print_expression_prec(const expression_t *expression, unsigned top_prec)
754 {
755         if (expression->kind == EXPR_UNARY_CAST_IMPLICIT && !print_implicit_casts) {
756                 expression = expression->unary.value;
757         }
758
759         bool parenthesized =
760                 expression->base.parenthesized                 ||
761                 (print_parenthesis && top_prec != PREC_BOTTOM) ||
762                 top_prec > get_expression_precedence(expression->base.kind);
763
764         if (parenthesized)
765                 fputc('(', out);
766         switch (expression->kind) {
767         case EXPR_UNKNOWN:
768         case EXPR_INVALID:
769                 fputs("$invalid expression$", out);
770                 break;
771         case EXPR_CHARACTER_CONSTANT:
772                 print_character_constant(&expression->conste);
773                 break;
774         case EXPR_WIDE_CHARACTER_CONSTANT:
775                 print_wide_character_constant(&expression->conste);
776                 break;
777         case EXPR_CONST:
778                 print_const(&expression->conste);
779                 break;
780         case EXPR_FUNCNAME:
781                 print_funcname(&expression->funcname);
782                 break;
783         case EXPR_STRING_LITERAL:
784                 print_string_literal(&expression->string);
785                 break;
786         case EXPR_WIDE_STRING_LITERAL:
787                 print_wide_string_literal(&expression->wide_string);
788                 break;
789         case EXPR_COMPOUND_LITERAL:
790                 print_compound_literal(&expression->compound_literal);
791                 break;
792         case EXPR_CALL:
793                 print_call_expression(&expression->call);
794                 break;
795         EXPR_BINARY_CASES
796                 print_binary_expression(&expression->binary);
797                 break;
798         case EXPR_REFERENCE:
799         case EXPR_REFERENCE_ENUM_VALUE:
800                 print_reference_expression(&expression->reference);
801                 break;
802         case EXPR_ARRAY_ACCESS:
803                 print_array_expression(&expression->array_access);
804                 break;
805         case EXPR_LABEL_ADDRESS:
806                 print_label_address_expression(&expression->label_address);
807                 break;
808         EXPR_UNARY_CASES
809                 print_unary_expression(&expression->unary);
810                 break;
811         case EXPR_SIZEOF:
812         case EXPR_ALIGNOF:
813                 print_typeprop_expression(&expression->typeprop);
814                 break;
815         case EXPR_BUILTIN_SYMBOL:
816                 print_builtin_symbol(&expression->builtin_symbol);
817                 break;
818         case EXPR_BUILTIN_CONSTANT_P:
819                 print_builtin_constant(&expression->builtin_constant);
820                 break;
821         case EXPR_BUILTIN_TYPES_COMPATIBLE_P:
822                 print_builtin_types_compatible(&expression->builtin_types_compatible);
823                 break;
824         case EXPR_CONDITIONAL:
825                 print_conditional(&expression->conditional);
826                 break;
827         case EXPR_VA_START:
828                 print_va_start(&expression->va_starte);
829                 break;
830         case EXPR_VA_ARG:
831                 print_va_arg(&expression->va_arge);
832                 break;
833         case EXPR_SELECT:
834                 print_select(&expression->select);
835                 break;
836         case EXPR_CLASSIFY_TYPE:
837                 print_classify_type_expression(&expression->classify_type);
838                 break;
839         case EXPR_OFFSETOF:
840                 print_offsetof_expression(&expression->offsetofe);
841                 break;
842         case EXPR_STATEMENT:
843                 print_statement_expression(&expression->statement);
844                 break;
845
846         default:
847                 /* TODO */
848                 fprintf(out, "some expression of type %d", (int)expression->kind);
849                 break;
850         }
851         if (parenthesized)
852                 fputc(')', out);
853 }
854
855 /**
856  * Print an compound statement.
857  *
858  * @param block  the compound statement
859  */
860 static void print_compound_statement(const compound_statement_t *block)
861 {
862         fputs("{\n", out);
863         ++indent;
864
865         statement_t *statement = block->statements;
866         while (statement != NULL) {
867                 if (statement->base.kind == STATEMENT_CASE_LABEL)
868                         --indent;
869                 if (statement->kind != STATEMENT_LABEL)
870                         print_indent();
871                 print_statement(statement);
872
873                 statement = statement->base.next;
874         }
875         --indent;
876         print_indent();
877         fputs(block->stmt_expr ? "}" : "}\n", out);
878 }
879
880 /**
881  * Print a return statement.
882  *
883  * @param statement  the return statement
884  */
885 static void print_return_statement(const return_statement_t *statement)
886 {
887         expression_t const *const val = statement->value;
888         if (val != NULL) {
889                 fputs("return ", out);
890                 print_expression(val);
891                 fputs(";\n", out);
892         } else {
893                 fputs("return;\n", out);
894         }
895 }
896
897 /**
898  * Print an expression statement.
899  *
900  * @param statement  the expression statement
901  */
902 static void print_expression_statement(const expression_statement_t *statement)
903 {
904         print_expression(statement->expression);
905         fputs(";\n", out);
906 }
907
908 /**
909  * Print a goto statement.
910  *
911  * @param statement  the goto statement
912  */
913 static void print_goto_statement(const goto_statement_t *statement)
914 {
915         fputs("goto ", out);
916         if (statement->expression != NULL) {
917                 fputc('*', out);
918                 print_expression(statement->expression);
919         } else {
920                 fputs(statement->label->base.symbol->string, out);
921         }
922         fputs(";\n", out);
923 }
924
925 /**
926  * Print a label statement.
927  *
928  * @param statement  the label statement
929  */
930 static void print_label_statement(const label_statement_t *statement)
931 {
932         fprintf(out, "%s:\n", statement->label->base.symbol->string);
933         print_indent();
934         print_statement(statement->statement);
935 }
936
937 /**
938  * Print an if statement.
939  *
940  * @param statement  the if statement
941  */
942 static void print_if_statement(const if_statement_t *statement)
943 {
944         fputs("if (", out);
945         print_expression(statement->condition);
946         fputs(") ", out);
947         print_statement(statement->true_statement);
948
949         if (statement->false_statement != NULL) {
950                 print_indent();
951                 fputs("else ", out);
952                 print_statement(statement->false_statement);
953         }
954 }
955
956 /**
957  * Print a switch statement.
958  *
959  * @param statement  the switch statement
960  */
961 static void print_switch_statement(const switch_statement_t *statement)
962 {
963         fputs("switch (", out);
964         print_expression(statement->expression);
965         fputs(") ", out);
966         print_statement(statement->body);
967 }
968
969 /**
970  * Print a case label (including the default label).
971  *
972  * @param statement  the case label statement
973  */
974 static void print_case_label(const case_label_statement_t *statement)
975 {
976         if (statement->expression == NULL) {
977                 fputs("default:\n", out);
978         } else {
979                 fputs("case ", out);
980                 print_expression(statement->expression);
981                 if (statement->end_range != NULL) {
982                         fputs(" ... ", out);
983                         print_expression(statement->end_range);
984                 }
985                 fputs(":\n", out);
986         }
987         ++indent;
988         if (statement->statement != NULL) {
989                 if (statement->statement->base.kind == STATEMENT_CASE_LABEL) {
990                         --indent;
991                 }
992                 print_indent();
993                 print_statement(statement->statement);
994         }
995 }
996
997 static void print_typedef(const entity_t *entity)
998 {
999         fputs("typedef ", out);
1000         print_type_ext(entity->typedefe.type, entity->base.symbol, NULL);
1001         fputc(';', out);
1002 }
1003
1004 /**
1005  * returns true if the entity is a compiler generated one and has no real
1006  * correspondenc in the source file
1007  */
1008 static bool is_generated_entity(const entity_t *entity)
1009 {
1010         if (entity->kind == ENTITY_TYPEDEF)
1011                 return entity->typedefe.builtin;
1012
1013         if (is_declaration(entity))
1014                 return entity->declaration.implicit;
1015
1016         return false;
1017 }
1018
1019 /**
1020  * Print a declaration statement.
1021  *
1022  * @param statement   the statement
1023  */
1024 static void print_declaration_statement(
1025                 const declaration_statement_t *statement)
1026 {
1027         bool first = true;
1028         entity_t *entity = statement->declarations_begin;
1029         if (entity == NULL) {
1030                 fputs("/* empty declaration statement */\n", out);
1031                 return;
1032         }
1033
1034         entity_t *const end = statement->declarations_end->base.next;
1035         for (; entity != end; entity = entity->base.next) {
1036                 if (entity->kind == ENTITY_ENUM_VALUE)
1037                         continue;
1038                 if (is_generated_entity(entity))
1039                         continue;
1040
1041                 if (!first) {
1042                         print_indent();
1043                 } else {
1044                         first = false;
1045                 }
1046
1047                 print_entity(entity);
1048                 fputc('\n', out);
1049         }
1050 }
1051
1052 /**
1053  * Print a while statement.
1054  *
1055  * @param statement   the statement
1056  */
1057 static void print_while_statement(const while_statement_t *statement)
1058 {
1059         fputs("while (", out);
1060         print_expression(statement->condition);
1061         fputs(") ", out);
1062         print_statement(statement->body);
1063 }
1064
1065 /**
1066  * Print a do-while statement.
1067  *
1068  * @param statement   the statement
1069  */
1070 static void print_do_while_statement(const do_while_statement_t *statement)
1071 {
1072         fputs("do ", out);
1073         print_statement(statement->body);
1074         print_indent();
1075         fputs("while (", out);
1076         print_expression(statement->condition);
1077         fputs(");\n", out);
1078 }
1079
1080 /**
1081  * Print a for statement.
1082  *
1083  * @param statement   the statement
1084  */
1085 static void print_for_statement(const for_statement_t *statement)
1086 {
1087         fputs("for (", out);
1088         if (statement->initialisation != NULL) {
1089                 print_expression(statement->initialisation);
1090                 fputc(';', out);
1091         } else {
1092                 entity_t const *entity = statement->scope.entities;
1093                 for (; entity != NULL; entity = entity->base.next) {
1094                         if (is_generated_entity(entity))
1095                                 continue;
1096                         /* FIXME display of multiple declarations is wrong */
1097                         print_declaration(entity);
1098                 }
1099         }
1100         if (statement->condition != NULL) {
1101                 fputc(' ', out);
1102                 print_expression(statement->condition);
1103         }
1104         fputc(';', out);
1105         if (statement->step != NULL) {
1106                 fputc(' ', out);
1107                 print_expression(statement->step);
1108         }
1109         fputs(") ", out);
1110         print_statement(statement->body);
1111 }
1112
1113 /**
1114  * Print assembler arguments.
1115  *
1116  * @param arguments   the arguments
1117  */
1118 static void print_asm_arguments(asm_argument_t *arguments)
1119 {
1120         asm_argument_t *argument = arguments;
1121         for (; argument != NULL; argument = argument->next) {
1122                 if (argument != arguments)
1123                         fputs(", ", out);
1124
1125                 if (argument->symbol) {
1126                         fprintf(out, "[%s] ", argument->symbol->string);
1127                 }
1128                 print_quoted_string(&argument->constraints, '"', 1);
1129                 fputs(" (", out);
1130                 print_expression(argument->expression);
1131                 fputc(')', out);
1132         }
1133 }
1134
1135 /**
1136  * Print assembler clobbers.
1137  *
1138  * @param clobbers   the clobbers
1139  */
1140 static void print_asm_clobbers(asm_clobber_t *clobbers)
1141 {
1142         asm_clobber_t *clobber = clobbers;
1143         for (; clobber != NULL; clobber = clobber->next) {
1144                 if (clobber != clobbers)
1145                         fputs(", ", out);
1146
1147                 print_quoted_string(&clobber->clobber, '"', 1);
1148         }
1149 }
1150
1151 /**
1152  * Print an assembler statement.
1153  *
1154  * @param statement   the statement
1155  */
1156 static void print_asm_statement(const asm_statement_t *statement)
1157 {
1158         fputs("asm ", out);
1159         if (statement->is_volatile) {
1160                 fputs("volatile ", out);
1161         }
1162         fputc('(', out);
1163         print_quoted_string(&statement->asm_text, '"', 1);
1164         if (statement->outputs  == NULL &&
1165             statement->inputs   == NULL &&
1166             statement->clobbers == NULL)
1167                 goto end_of_print_asm_statement;
1168
1169         fputs(" : ", out);
1170         print_asm_arguments(statement->outputs);
1171         if (statement->inputs == NULL && statement->clobbers == NULL)
1172                 goto end_of_print_asm_statement;
1173
1174         fputs(" : ", out);
1175         print_asm_arguments(statement->inputs);
1176         if (statement->clobbers == NULL)
1177                 goto end_of_print_asm_statement;
1178
1179         fputs(" : ", out);
1180         print_asm_clobbers(statement->clobbers);
1181
1182 end_of_print_asm_statement:
1183         fputs(");\n", out);
1184 }
1185
1186 /**
1187  * Print a microsoft __try statement.
1188  *
1189  * @param statement   the statement
1190  */
1191 static void print_ms_try_statement(const ms_try_statement_t *statement)
1192 {
1193         fputs("__try ", out);
1194         print_statement(statement->try_statement);
1195         print_indent();
1196         if (statement->except_expression != NULL) {
1197                 fputs("__except(", out);
1198                 print_expression(statement->except_expression);
1199                 fputs(") ", out);
1200         } else {
1201                 fputs("__finally ", out);
1202         }
1203         print_statement(statement->final_statement);
1204 }
1205
1206 /**
1207  * Print a microsoft __leave statement.
1208  *
1209  * @param statement   the statement
1210  */
1211 static void print_leave_statement(const leave_statement_t *statement)
1212 {
1213         (void)statement;
1214         fputs("__leave;\n", out);
1215 }
1216
1217 /**
1218  * Print a statement.
1219  *
1220  * @param statement   the statement
1221  */
1222 void print_statement(const statement_t *statement)
1223 {
1224         switch (statement->kind) {
1225         case STATEMENT_EMPTY:
1226                 fputs(";\n", out);
1227                 break;
1228         case STATEMENT_COMPOUND:
1229                 print_compound_statement(&statement->compound);
1230                 break;
1231         case STATEMENT_RETURN:
1232                 print_return_statement(&statement->returns);
1233                 break;
1234         case STATEMENT_EXPRESSION:
1235                 print_expression_statement(&statement->expression);
1236                 break;
1237         case STATEMENT_LABEL:
1238                 print_label_statement(&statement->label);
1239                 break;
1240         case STATEMENT_GOTO:
1241                 print_goto_statement(&statement->gotos);
1242                 break;
1243         case STATEMENT_CONTINUE:
1244                 fputs("continue;\n", out);
1245                 break;
1246         case STATEMENT_BREAK:
1247                 fputs("break;\n", out);
1248                 break;
1249         case STATEMENT_IF:
1250                 print_if_statement(&statement->ifs);
1251                 break;
1252         case STATEMENT_SWITCH:
1253                 print_switch_statement(&statement->switchs);
1254                 break;
1255         case STATEMENT_CASE_LABEL:
1256                 print_case_label(&statement->case_label);
1257                 break;
1258         case STATEMENT_DECLARATION:
1259                 print_declaration_statement(&statement->declaration);
1260                 break;
1261         case STATEMENT_WHILE:
1262                 print_while_statement(&statement->whiles);
1263                 break;
1264         case STATEMENT_DO_WHILE:
1265                 print_do_while_statement(&statement->do_while);
1266                 break;
1267         case STATEMENT_FOR:
1268                 print_for_statement(&statement->fors);
1269                 break;
1270         case STATEMENT_ASM:
1271                 print_asm_statement(&statement->asms);
1272                 break;
1273         case STATEMENT_MS_TRY:
1274                 print_ms_try_statement(&statement->ms_try);
1275                 break;
1276         case STATEMENT_LEAVE:
1277                 print_leave_statement(&statement->leave);
1278                 break;
1279         case STATEMENT_INVALID:
1280                 fputs("$invalid statement$\n", out);
1281                 break;
1282         }
1283 }
1284
1285 /**
1286  * Print a storage class.
1287  *
1288  * @param storage_class   the storage class
1289  */
1290 static void print_storage_class(storage_class_tag_t storage_class)
1291 {
1292         switch (storage_class) {
1293         case STORAGE_CLASS_NONE:     return;
1294         case STORAGE_CLASS_TYPEDEF:  fputs("typedef ",  out); return;
1295         case STORAGE_CLASS_EXTERN:   fputs("extern ",   out); return;
1296         case STORAGE_CLASS_STATIC:   fputs("static ",   out); return;
1297         case STORAGE_CLASS_AUTO:     fputs("auto ",     out); return;
1298         case STORAGE_CLASS_REGISTER: fputs("register ", out); return;
1299         }
1300         panic("invalid storage class");
1301 }
1302
1303 /**
1304  * Print an initializer.
1305  *
1306  * @param initializer  the initializer
1307  */
1308 void print_initializer(const initializer_t *initializer)
1309 {
1310         if (initializer == NULL) {
1311                 fputs("{}", out);
1312                 return;
1313         }
1314
1315         switch (initializer->kind) {
1316         case INITIALIZER_VALUE: {
1317                 const initializer_value_t *value = &initializer->value;
1318                 print_assignment_expression(value->value);
1319                 return;
1320         }
1321         case INITIALIZER_LIST: {
1322                 assert(initializer->kind == INITIALIZER_LIST);
1323                 fputs("{ ", out);
1324                 const initializer_list_t *list = &initializer->list;
1325
1326                 for (size_t i = 0 ; i < list->len; ++i) {
1327                         const initializer_t *sub_init = list->initializers[i];
1328                         print_initializer(list->initializers[i]);
1329                         if (i < list->len-1) {
1330                                 if (sub_init == NULL || sub_init->kind != INITIALIZER_DESIGNATOR)
1331                                         fputs(", ", out);
1332                         }
1333                 }
1334                 fputs(" }", out);
1335                 return;
1336         }
1337         case INITIALIZER_STRING:
1338                 print_quoted_string(&initializer->string.string, '"', 1);
1339                 return;
1340         case INITIALIZER_WIDE_STRING:
1341                 print_quoted_wide_string(&initializer->wide_string.string, '"', 1);
1342                 return;
1343         case INITIALIZER_DESIGNATOR:
1344                 print_designator(initializer->designator.designator);
1345                 fputs(" = ", out);
1346                 return;
1347         }
1348
1349         panic("invalid initializer kind found");
1350 }
1351
1352 /**
1353  * Print microsoft extended declaration modifiers.
1354  */
1355 static void print_ms_modifiers(const declaration_t *declaration)
1356 {
1357         if ((c_mode & _MS) == 0)
1358                 return;
1359
1360         decl_modifiers_t modifiers = declaration->modifiers;
1361
1362         bool        ds_shown = false;
1363         const char *next     = "(";
1364
1365         if (declaration->base.kind == ENTITY_VARIABLE) {
1366                 variable_t *variable = (variable_t*)declaration;
1367                 if (variable->alignment != 0
1368                                 || variable->get_property_sym != NULL
1369                                 || variable->put_property_sym != NULL) {
1370                         if (!ds_shown) {
1371                                 fputs("__declspec", out);
1372                                 ds_shown = true;
1373                         }
1374
1375                         if (variable->alignment != 0) {
1376                                 fputs(next, out); next = ", "; fprintf(out, "align(%u)", variable->alignment);
1377                         }
1378                         if (variable->get_property_sym != NULL
1379                                         || variable->put_property_sym != NULL) {
1380                                 char *comma = "";
1381                                 fputs(next, out); next = ", "; fputs("property(", out);
1382                                 if (variable->get_property_sym != NULL) {
1383                                         fprintf(out, "get=%s", variable->get_property_sym->string);
1384                                         comma = ", ";
1385                                 }
1386                                 if (variable->put_property_sym != NULL)
1387                                         fprintf(out, "%sput=%s", comma, variable->put_property_sym->string);
1388                                 fputc(')', out);
1389                         }
1390                 }
1391         }
1392
1393         /* DM_FORCEINLINE handled outside. */
1394         if ((modifiers & ~DM_FORCEINLINE) != 0) {
1395                 if (!ds_shown) {
1396                         fputs("__declspec", out);
1397                         ds_shown = true;
1398                 }
1399                 if (modifiers & DM_DLLIMPORT) {
1400                         fputs(next, out); next = ", "; fputs("dllimport", out);
1401                 }
1402                 if (modifiers & DM_DLLEXPORT) {
1403                         fputs(next, out); next = ", "; fputs("dllexport", out);
1404                 }
1405                 if (modifiers & DM_THREAD) {
1406                         fputs(next, out); next = ", "; fputs("thread", out);
1407                 }
1408                 if (modifiers & DM_NAKED) {
1409                         fputs(next, out); next = ", "; fputs("naked", out);
1410                 }
1411                 if (modifiers & DM_THREAD) {
1412                         fputs(next, out); next = ", "; fputs("thread", out);
1413                 }
1414                 if (modifiers & DM_SELECTANY) {
1415                         fputs(next, out); next = ", "; fputs("selectany", out);
1416                 }
1417                 if (modifiers & DM_NOTHROW) {
1418                         fputs(next, out); next = ", "; fputs("nothrow", out);
1419                 }
1420                 if (modifiers & DM_NORETURN) {
1421                         fputs(next, out); next = ", "; fputs("noreturn", out);
1422                 }
1423                 if (modifiers & DM_NOINLINE) {
1424                         fputs(next, out); next = ", "; fputs("noinline", out);
1425                 }
1426                 if (modifiers & DM_DEPRECATED) {
1427                         fputs(next, out); next = ", "; fputs("deprecated", out);
1428                         if (declaration->deprecated_string != NULL)
1429                                 fprintf(out, "(\"%s\")",
1430                                         declaration->deprecated_string);
1431                 }
1432                 if (modifiers & DM_RESTRICT) {
1433                         fputs(next, out); next = ", "; fputs("restrict", out);
1434                 }
1435                 if (modifiers & DM_NOALIAS) {
1436                         fputs(next, out); next = ", "; fputs("noalias", out);
1437                 }
1438         }
1439
1440         if (ds_shown)
1441                 fputs(") ", out);
1442 }
1443
1444 static void print_scope(const scope_t *scope)
1445 {
1446         const entity_t *entity = scope->entities;
1447         for ( ; entity != NULL; entity = entity->base.next) {
1448                 print_indent();
1449                 print_entity(entity);
1450                 fputs("\n", out);
1451         }
1452 }
1453
1454 static void print_namespace(const namespace_t *namespace)
1455 {
1456         fputs("namespace ", out);
1457         if (namespace->base.symbol != NULL) {
1458                 fputs(namespace->base.symbol->string, out);
1459                 fputc(' ', out);
1460         }
1461
1462         fputs("{\n", out);
1463         ++indent;
1464
1465         print_scope(&namespace->members);
1466
1467         --indent;
1468         print_indent();
1469         fputs("}\n", out);
1470 }
1471
1472 /**
1473  * Print a variable or function declaration
1474  */
1475 void print_declaration(const entity_t *entity)
1476 {
1477         assert(is_declaration(entity));
1478         const declaration_t *declaration = &entity->declaration;
1479
1480         print_storage_class((storage_class_tag_t)declaration->declared_storage_class);
1481         if (entity->kind == ENTITY_FUNCTION) {
1482                 function_t *function = (function_t*)declaration;
1483                 if (function->is_inline) {
1484                         if (declaration->modifiers & DM_FORCEINLINE) {
1485                                 fputs("__forceinline ", out);
1486                         } else if (declaration->modifiers & DM_MICROSOFT_INLINE) {
1487                                 fputs("__inline ", out);
1488                         } else {
1489                                 fputs("inline ", out);
1490                         }
1491                 }
1492         }
1493         print_ms_modifiers(declaration);
1494         switch (entity->kind) {
1495                 case ENTITY_FUNCTION:
1496                         print_type_ext(entity->declaration.type, entity->base.symbol,
1497                                         &entity->function.parameters);
1498
1499                         if (entity->function.statement != NULL) {
1500                                 fputc('\n', out);
1501                                 print_indent();
1502                                 print_statement(entity->function.statement);
1503                                 return;
1504                         }
1505                         break;
1506
1507                 case ENTITY_VARIABLE:
1508                         if (entity->variable.thread_local)
1509                                 fputs("__thread ", out);
1510                         print_type_ext(declaration->type, declaration->base.symbol, NULL);
1511                         if (entity->variable.initializer != NULL) {
1512                                 fputs(" = ", out);
1513                                 print_initializer(entity->variable.initializer);
1514                         }
1515                         break;
1516
1517                 default:
1518                         print_type_ext(declaration->type, declaration->base.symbol, NULL);
1519                         break;
1520         }
1521         fputc(';', out);
1522 }
1523
1524 /**
1525  * Prints an expression.
1526  *
1527  * @param expression  the expression
1528  */
1529 void print_expression(const expression_t *expression)
1530 {
1531         print_expression_prec(expression, PREC_BOTTOM);
1532 }
1533
1534 /**
1535  * Print a declaration.
1536  *
1537  * @param declaration  the declaration
1538  */
1539 void print_entity(const entity_t *entity)
1540 {
1541         if (entity->base.namespc != NAMESPACE_NORMAL && entity->base.symbol == NULL)
1542                 return;
1543
1544         switch ((entity_kind_tag_t)entity->kind) {
1545         case ENTITY_VARIABLE:
1546         case ENTITY_PARAMETER:
1547         case ENTITY_COMPOUND_MEMBER:
1548         case ENTITY_FUNCTION:
1549                 print_declaration(entity);
1550                 return;
1551         case ENTITY_TYPEDEF:
1552                 print_typedef(entity);
1553                 return;
1554         case ENTITY_STRUCT:
1555                 fputs("struct ", out);
1556                 fputs(entity->base.symbol->string, out);
1557                 if (entity->structe.complete) {
1558                         fputc(' ', out);
1559                         print_compound_definition(&entity->structe);
1560                 }
1561                 fputc(';', out);
1562                 return;
1563         case ENTITY_UNION:
1564                 fputs("union ", out);
1565                 fputs(entity->base.symbol->string, out);
1566                 if (entity->unione.complete) {
1567                         fputc(' ', out);
1568                         print_compound_definition(&entity->unione);
1569                 }
1570                 fputc(';', out);
1571                 return;
1572         case ENTITY_ENUM:
1573                 fputs("enum ", out);
1574                 fputs(entity->base.symbol->string, out);
1575                 fputc(' ', out);
1576                 print_enum_definition(&entity->enume);
1577                 fputc(';', out);
1578                 return;
1579         case ENTITY_NAMESPACE:
1580                 print_namespace(&entity->namespacee);
1581                 return;
1582         case ENTITY_LOCAL_LABEL:
1583                 fprintf(out, "__label__ %s;", entity->base.symbol->string);
1584                 return;
1585         case ENTITY_LABEL:
1586         case ENTITY_ENUM_VALUE:
1587                 panic("print_entity used on unexpected entity type");
1588         case ENTITY_INVALID:
1589                 break;
1590         }
1591         panic("Invalid entity type encountered");
1592 }
1593
1594 /**
1595  * Print the AST of a translation unit.
1596  *
1597  * @param unit   the translation unit
1598  */
1599 void print_ast(const translation_unit_t *unit)
1600 {
1601         inc_type_visited();
1602
1603         entity_t *entity = unit->scope.entities;
1604         for ( ; entity != NULL; entity = entity->base.next) {
1605                 if (entity->kind == ENTITY_ENUM_VALUE)
1606                         continue;
1607                 if (entity->base.namespc != NAMESPACE_NORMAL
1608                                 && entity->base.symbol == NULL)
1609                         continue;
1610                 if (is_generated_entity(entity))
1611                         continue;
1612
1613                 print_indent();
1614                 print_entity(entity);
1615                 fputc('\n', out);
1616         }
1617 }
1618
1619 bool is_constant_initializer(const initializer_t *initializer)
1620 {
1621         switch (initializer->kind) {
1622         case INITIALIZER_STRING:
1623         case INITIALIZER_WIDE_STRING:
1624         case INITIALIZER_DESIGNATOR:
1625                 return true;
1626
1627         case INITIALIZER_VALUE:
1628                 return is_constant_expression(initializer->value.value);
1629
1630         case INITIALIZER_LIST:
1631                 for (size_t i = 0; i < initializer->list.len; ++i) {
1632                         initializer_t *sub_initializer = initializer->list.initializers[i];
1633                         if (!is_constant_initializer(sub_initializer))
1634                                 return false;
1635                 }
1636                 return true;
1637         }
1638         panic("invalid initializer kind found");
1639 }
1640
1641 static bool is_object_with_linker_constant_address(const expression_t *expression)
1642 {
1643         switch (expression->kind) {
1644         case EXPR_UNARY_DEREFERENCE:
1645                 return is_address_constant(expression->unary.value);
1646
1647         case EXPR_SELECT: {
1648                 type_t *base_type = skip_typeref(expression->select.compound->base.type);
1649                 if (is_type_pointer(base_type)) {
1650                         /* it's a -> */
1651                         return is_address_constant(expression->select.compound);
1652                 } else {
1653                         return is_object_with_linker_constant_address(expression->select.compound);
1654                 }
1655         }
1656
1657         case EXPR_ARRAY_ACCESS:
1658                 return is_constant_expression(expression->array_access.index)
1659                         && is_address_constant(expression->array_access.array_ref);
1660
1661         case EXPR_REFERENCE: {
1662                 entity_t *entity = expression->reference.entity;
1663                 if (is_declaration(entity)) {
1664                         switch ((storage_class_tag_t)entity->declaration.storage_class) {
1665                         case STORAGE_CLASS_NONE:
1666                         case STORAGE_CLASS_EXTERN:
1667                         case STORAGE_CLASS_STATIC:
1668                                 return
1669                                         entity->kind != ENTITY_VARIABLE ||
1670                                         !entity->variable.thread_local;
1671
1672                         case STORAGE_CLASS_REGISTER:
1673                         case STORAGE_CLASS_TYPEDEF:
1674                         case STORAGE_CLASS_AUTO:
1675                                 break;
1676                         }
1677                 }
1678                 return false;
1679         }
1680
1681         default:
1682                 return false;
1683         }
1684 }
1685
1686 bool is_address_constant(const expression_t *expression)
1687 {
1688         switch (expression->kind) {
1689         case EXPR_UNARY_TAKE_ADDRESS:
1690                 return is_object_with_linker_constant_address(expression->unary.value);
1691
1692         case EXPR_UNARY_DEREFERENCE: {
1693                 type_t *real_type
1694                         = revert_automatic_type_conversion(expression->unary.value);
1695                 /* dereferencing a function is a NOP */
1696                 if (is_type_function(real_type)) {
1697                         return is_address_constant(expression->unary.value);
1698                 }
1699                 /* FALLTHROUGH */
1700         }
1701
1702         case EXPR_UNARY_CAST: {
1703                 type_t *dest = skip_typeref(expression->base.type);
1704                 if (!is_type_pointer(dest) && (
1705                         dest->kind != TYPE_ATOMIC                                               ||
1706                         !(get_atomic_type_flags(dest->atomic.akind) & ATOMIC_TYPE_FLAG_INTEGER) ||
1707                         get_atomic_type_size(dest->atomic.akind) < get_atomic_type_size(get_intptr_kind())
1708                     ))
1709                         return false;
1710
1711                 return (is_constant_expression(expression->unary.value)
1712                         || is_address_constant(expression->unary.value));
1713         }
1714
1715         case EXPR_BINARY_ADD:
1716         case EXPR_BINARY_SUB: {
1717                 expression_t *left  = expression->binary.left;
1718                 expression_t *right = expression->binary.right;
1719
1720                 if (is_type_pointer(skip_typeref(left->base.type))) {
1721                         return is_address_constant(left) && is_constant_expression(right);
1722                 } else if (is_type_pointer(skip_typeref(right->base.type))) {
1723                         return is_constant_expression(left)     && is_address_constant(right);
1724                 }
1725
1726                 return false;
1727         }
1728
1729         case EXPR_REFERENCE: {
1730                 entity_t *entity = expression->reference.entity;
1731                 if (!is_declaration(entity))
1732                         return false;
1733
1734                 type_t *type = skip_typeref(entity->declaration.type);
1735                 if (is_type_function(type))
1736                         return true;
1737                 if (is_type_array(type)) {
1738                         return is_object_with_linker_constant_address(expression);
1739                 }
1740                 /* Prevent stray errors */
1741                 if (!is_type_valid(type))
1742                         return true;
1743                 return false;
1744         }
1745
1746         case EXPR_ARRAY_ACCESS: {
1747                 type_t *const type =
1748                         skip_typeref(revert_automatic_type_conversion(expression));
1749                 return
1750                         is_type_array(type)                                    &&
1751                         is_constant_expression(expression->array_access.index) &&
1752                         is_address_constant(expression->array_access.array_ref);
1753         }
1754
1755         default:
1756                 return false;
1757         }
1758 }
1759
1760 static bool is_builtin_const_call(const expression_t *expression)
1761 {
1762         expression_t *function = expression->call.function;
1763         if (function->kind != EXPR_BUILTIN_SYMBOL) {
1764                 return false;
1765         }
1766
1767         symbol_t *symbol = function->builtin_symbol.symbol;
1768
1769         switch (symbol->ID) {
1770         case T___builtin_huge_val:
1771         case T___builtin_inf:
1772         case T___builtin_inff:
1773         case T___builtin_infl:
1774         case T___builtin_nan:
1775         case T___builtin_nanf:
1776         case T___builtin_nanl:
1777                 return true;
1778         }
1779
1780         return false;
1781 }
1782
1783 static bool is_constant_pointer(const expression_t *expression)
1784 {
1785         if (is_constant_expression(expression))
1786                 return true;
1787
1788         switch (expression->kind) {
1789         case EXPR_UNARY_CAST:
1790                 return is_constant_pointer(expression->unary.value);
1791         default:
1792                 return false;
1793         }
1794 }
1795
1796 static bool is_object_with_constant_address(const expression_t *expression)
1797 {
1798         switch (expression->kind) {
1799         case EXPR_SELECT: {
1800                 expression_t *compound      = expression->select.compound;
1801                 type_t       *compound_type = compound->base.type;
1802                 compound_type = skip_typeref(compound_type);
1803                 if (is_type_pointer(compound_type)) {
1804                         return is_constant_pointer(compound);
1805                 } else {
1806                         return is_object_with_constant_address(compound);
1807                 }
1808         }
1809
1810         case EXPR_ARRAY_ACCESS: {
1811                 array_access_expression_t const* const array_access =
1812                         &expression->array_access;
1813                 return
1814                         is_constant_expression(array_access->index) && (
1815                                 is_object_with_constant_address(array_access->array_ref) ||
1816                                 is_constant_pointer(array_access->array_ref)
1817                         );
1818         }
1819
1820         case EXPR_UNARY_DEREFERENCE:
1821                 return is_constant_pointer(expression->unary.value);
1822         default:
1823                 return false;
1824         }
1825 }
1826
1827 bool is_constant_expression(const expression_t *expression)
1828 {
1829         switch (expression->kind) {
1830
1831         case EXPR_CONST:
1832         case EXPR_CHARACTER_CONSTANT:
1833         case EXPR_WIDE_CHARACTER_CONSTANT:
1834         case EXPR_STRING_LITERAL:
1835         case EXPR_WIDE_STRING_LITERAL:
1836         case EXPR_CLASSIFY_TYPE:
1837         case EXPR_FUNCNAME:
1838         case EXPR_OFFSETOF:
1839         case EXPR_ALIGNOF:
1840         case EXPR_BUILTIN_CONSTANT_P:
1841         case EXPR_BUILTIN_TYPES_COMPATIBLE_P:
1842         case EXPR_LABEL_ADDRESS:
1843         case EXPR_REFERENCE_ENUM_VALUE:
1844                 return true;
1845
1846         case EXPR_SIZEOF: {
1847                 type_t *type = expression->typeprop.type;
1848                 if (type == NULL)
1849                         type = expression->typeprop.tp_expression->base.type;
1850
1851                 type = skip_typeref(type);
1852                 if (is_type_array(type) && type->array.is_vla)
1853                         return false;
1854                 return true;
1855         }
1856
1857         case EXPR_BUILTIN_SYMBOL:
1858         case EXPR_SELECT:
1859         case EXPR_VA_START:
1860         case EXPR_VA_ARG:
1861         case EXPR_STATEMENT:
1862         case EXPR_REFERENCE:
1863         case EXPR_UNARY_POSTFIX_INCREMENT:
1864         case EXPR_UNARY_POSTFIX_DECREMENT:
1865         case EXPR_UNARY_PREFIX_INCREMENT:
1866         case EXPR_UNARY_PREFIX_DECREMENT:
1867         case EXPR_UNARY_ASSUME: /* has VOID type */
1868         case EXPR_UNARY_DEREFERENCE:
1869         case EXPR_UNARY_DELETE:
1870         case EXPR_UNARY_DELETE_ARRAY:
1871         case EXPR_UNARY_THROW:
1872         case EXPR_BINARY_ASSIGN:
1873         case EXPR_BINARY_MUL_ASSIGN:
1874         case EXPR_BINARY_DIV_ASSIGN:
1875         case EXPR_BINARY_MOD_ASSIGN:
1876         case EXPR_BINARY_ADD_ASSIGN:
1877         case EXPR_BINARY_SUB_ASSIGN:
1878         case EXPR_BINARY_SHIFTLEFT_ASSIGN:
1879         case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
1880         case EXPR_BINARY_BITWISE_AND_ASSIGN:
1881         case EXPR_BINARY_BITWISE_XOR_ASSIGN:
1882         case EXPR_BINARY_BITWISE_OR_ASSIGN:
1883         case EXPR_BINARY_COMMA:
1884         case EXPR_ARRAY_ACCESS:
1885                 return false;
1886
1887         case EXPR_UNARY_TAKE_ADDRESS:
1888                 return is_object_with_constant_address(expression->unary.value);
1889
1890         case EXPR_CALL:
1891                 return is_builtin_const_call(expression);
1892
1893         case EXPR_UNARY_NEGATE:
1894         case EXPR_UNARY_PLUS:
1895         case EXPR_UNARY_BITWISE_NEGATE:
1896         case EXPR_UNARY_NOT:
1897                 return is_constant_expression(expression->unary.value);
1898
1899         case EXPR_UNARY_CAST:
1900         case EXPR_UNARY_CAST_IMPLICIT:
1901                 return is_type_arithmetic(skip_typeref(expression->base.type))
1902                         && is_constant_expression(expression->unary.value);
1903
1904         case EXPR_BINARY_ADD:
1905         case EXPR_BINARY_SUB:
1906         case EXPR_BINARY_MUL:
1907         case EXPR_BINARY_DIV:
1908         case EXPR_BINARY_MOD:
1909         case EXPR_BINARY_EQUAL:
1910         case EXPR_BINARY_NOTEQUAL:
1911         case EXPR_BINARY_LESS:
1912         case EXPR_BINARY_LESSEQUAL:
1913         case EXPR_BINARY_GREATER:
1914         case EXPR_BINARY_GREATEREQUAL:
1915         case EXPR_BINARY_BITWISE_AND:
1916         case EXPR_BINARY_BITWISE_OR:
1917         case EXPR_BINARY_BITWISE_XOR:
1918         case EXPR_BINARY_SHIFTLEFT:
1919         case EXPR_BINARY_SHIFTRIGHT:
1920         case EXPR_BINARY_ISGREATER:
1921         case EXPR_BINARY_ISGREATEREQUAL:
1922         case EXPR_BINARY_ISLESS:
1923         case EXPR_BINARY_ISLESSEQUAL:
1924         case EXPR_BINARY_ISLESSGREATER:
1925         case EXPR_BINARY_ISUNORDERED:
1926                 return is_constant_expression(expression->binary.left)
1927                         && is_constant_expression(expression->binary.right);
1928
1929         case EXPR_BINARY_LOGICAL_AND: {
1930                 expression_t const *const left = expression->binary.left;
1931                 if (!is_constant_expression(left))
1932                         return false;
1933                 if (fold_constant(left) == 0)
1934                         return true;
1935                 return is_constant_expression(expression->binary.right);
1936         }
1937
1938         case EXPR_BINARY_LOGICAL_OR: {
1939                 expression_t const *const left = expression->binary.left;
1940                 if (!is_constant_expression(left))
1941                         return false;
1942                 if (fold_constant(left) != 0)
1943                         return true;
1944                 return is_constant_expression(expression->binary.right);
1945         }
1946
1947         case EXPR_COMPOUND_LITERAL:
1948                 return is_constant_initializer(expression->compound_literal.initializer);
1949
1950         case EXPR_CONDITIONAL: {
1951                 expression_t *condition = expression->conditional.condition;
1952                 if (!is_constant_expression(condition))
1953                         return false;
1954
1955                 long val = fold_constant(condition);
1956                 if (val != 0) {
1957                         expression_t const *const t = expression->conditional.true_expression;
1958                         return t == NULL || is_constant_expression(t);
1959                 } else {
1960                         return is_constant_expression(expression->conditional.false_expression);
1961                 }
1962         }
1963
1964         case EXPR_INVALID:
1965                 return true;
1966
1967         case EXPR_UNKNOWN:
1968                 break;
1969         }
1970         panic("invalid expression found (is constant expression)");
1971 }
1972
1973 /**
1974  * Initialize the AST construction.
1975  */
1976 void init_ast(void)
1977 {
1978         obstack_init(&ast_obstack);
1979 }
1980
1981 /**
1982  * Free the AST.
1983  */
1984 void exit_ast(void)
1985 {
1986         obstack_free(&ast_obstack, NULL);
1987 }
1988
1989 /**
1990  * Set the output stream for the AST printer.
1991  *
1992  * @param stream  the output stream
1993  */
1994 void ast_set_output(FILE *stream)
1995 {
1996         out = stream;
1997         type_set_output(stream);
1998 }
1999
2000 /**
2001  * Allocate an AST object of the given size.
2002  *
2003  * @param size  the size of the object to allocate
2004  *
2005  * @return  A new allocated object in the AST memeory space.
2006  */
2007 void *(allocate_ast)(size_t size)
2008 {
2009         return _allocate_ast(size);
2010 }