- implemented __builtin_(return|frame)_address() FE support
[cparser] / ast.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include "ast_t.h"
23 #include "symbol_t.h"
24 #include "type_t.h"
25 #include "parser.h"
26 #include "lang_features.h"
27 #include "entity_t.h"
28
29 #include <assert.h>
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <ctype.h>
33
34 #if defined(__INTEL_COMPILER)
35 #include <mathimf.h>
36 #elif defined(__CYGWIN__)
37 #include "win32/cygwin_math_ext.h"
38 #else
39 #include <math.h>
40 #endif
41
42 #include "adt/error.h"
43 #include "adt/util.h"
44
45 struct obstack ast_obstack;
46
47 static FILE *out;
48 static int   indent;
49
50 /** If set, implicit casts are printed. */
51 bool print_implicit_casts = false;
52
53 /** If set parenthesis are printed to indicate operator precedence. */
54 bool print_parenthesis = false;
55
56 static void print_statement(const statement_t *statement);
57 static void print_expression_prec(const expression_t *expression, unsigned prec);
58
59 void change_indent(int delta)
60 {
61         indent += delta;
62         assert(indent >= 0);
63 }
64
65 void print_indent(void)
66 {
67         for (int i = 0; i < indent; ++i)
68                 fputc('\t', out);
69 }
70
71 /**
72  * Returns 1 if a given precedence level has right-to-left
73  * associativity, else 0.
74  *
75  * @param precedence   the operator precedence
76  */
77 static int right_to_left(unsigned precedence)
78 {
79         switch (precedence) {
80                 case PREC_ASSIGNMENT:
81                 case PREC_CONDITIONAL:
82                 case PREC_UNARY:
83                         return 1;
84
85                 default:
86                         return 0;
87         }
88 }
89
90 /**
91  * Return the precedence of an expression given by its kind.
92  *
93  * @param kind   the expression kind
94  */
95 static unsigned get_expression_precedence(expression_kind_t kind)
96 {
97         static const unsigned prec[] = {
98                 [EXPR_UNKNOWN]                   = PREC_PRIMARY,
99                 [EXPR_INVALID]                   = PREC_PRIMARY,
100                 [EXPR_REFERENCE]                 = PREC_PRIMARY,
101                 [EXPR_REFERENCE_ENUM_VALUE]      = PREC_PRIMARY,
102                 [EXPR_CHARACTER_CONSTANT]        = PREC_PRIMARY,
103                 [EXPR_WIDE_CHARACTER_CONSTANT]   = PREC_PRIMARY,
104                 [EXPR_CONST]                     = PREC_PRIMARY,
105                 [EXPR_STRING_LITERAL]            = PREC_PRIMARY,
106                 [EXPR_WIDE_STRING_LITERAL]       = PREC_PRIMARY,
107                 [EXPR_COMPOUND_LITERAL]          = PREC_UNARY,
108                 [EXPR_CALL]                      = PREC_POSTFIX,
109                 [EXPR_CONDITIONAL]               = PREC_CONDITIONAL,
110                 [EXPR_SELECT]                    = PREC_POSTFIX,
111                 [EXPR_ARRAY_ACCESS]              = PREC_POSTFIX,
112                 [EXPR_SIZEOF]                    = PREC_UNARY,
113                 [EXPR_CLASSIFY_TYPE]             = PREC_UNARY,
114                 [EXPR_ALIGNOF]                   = PREC_UNARY,
115
116                 [EXPR_FUNCNAME]                  = PREC_PRIMARY,
117                 [EXPR_BUILTIN_SYMBOL]            = PREC_PRIMARY,
118                 [EXPR_BUILTIN_CONSTANT_P]        = PREC_PRIMARY,
119                 [EXPR_BUILTIN_ADDRESS]           = PREC_PRIMARY,
120                 [EXPR_BUILTIN_PREFETCH]          = PREC_PRIMARY,
121                 [EXPR_OFFSETOF]                  = PREC_PRIMARY,
122                 [EXPR_VA_START]                  = PREC_PRIMARY,
123                 [EXPR_VA_ARG]                    = PREC_PRIMARY,
124                 [EXPR_STATEMENT]                 = PREC_PRIMARY,
125                 [EXPR_LABEL_ADDRESS]             = PREC_PRIMARY,
126
127                 [EXPR_UNARY_NEGATE]              = PREC_UNARY,
128                 [EXPR_UNARY_PLUS]                = PREC_UNARY,
129                 [EXPR_UNARY_BITWISE_NEGATE]      = PREC_UNARY,
130                 [EXPR_UNARY_NOT]                 = PREC_UNARY,
131                 [EXPR_UNARY_DEREFERENCE]         = PREC_UNARY,
132                 [EXPR_UNARY_TAKE_ADDRESS]        = PREC_UNARY,
133                 [EXPR_UNARY_POSTFIX_INCREMENT]   = PREC_POSTFIX,
134                 [EXPR_UNARY_POSTFIX_DECREMENT]   = PREC_POSTFIX,
135                 [EXPR_UNARY_PREFIX_INCREMENT]    = PREC_UNARY,
136                 [EXPR_UNARY_PREFIX_DECREMENT]    = PREC_UNARY,
137                 [EXPR_UNARY_CAST]                = PREC_UNARY,
138                 [EXPR_UNARY_CAST_IMPLICIT]       = PREC_UNARY,
139                 [EXPR_UNARY_ASSUME]              = PREC_PRIMARY,
140                 [EXPR_UNARY_DELETE]              = PREC_UNARY,
141                 [EXPR_UNARY_DELETE_ARRAY]        = PREC_UNARY,
142                 [EXPR_UNARY_THROW]               = PREC_ASSIGNMENT,
143
144                 [EXPR_BINARY_ADD]                = PREC_ADDITIVE,
145                 [EXPR_BINARY_SUB]                = PREC_ADDITIVE,
146                 [EXPR_BINARY_MUL]                = PREC_MULTIPLICATIVE,
147                 [EXPR_BINARY_DIV]                = PREC_MULTIPLICATIVE,
148                 [EXPR_BINARY_MOD]                = PREC_MULTIPLICATIVE,
149                 [EXPR_BINARY_EQUAL]              = PREC_EQUALITY,
150                 [EXPR_BINARY_NOTEQUAL]           = PREC_EQUALITY,
151                 [EXPR_BINARY_LESS]               = PREC_RELATIONAL,
152                 [EXPR_BINARY_LESSEQUAL]          = PREC_RELATIONAL,
153                 [EXPR_BINARY_GREATER]            = PREC_RELATIONAL,
154                 [EXPR_BINARY_GREATEREQUAL]       = PREC_RELATIONAL,
155                 [EXPR_BINARY_BITWISE_AND]        = PREC_AND,
156                 [EXPR_BINARY_BITWISE_OR]         = PREC_OR,
157                 [EXPR_BINARY_BITWISE_XOR]        = PREC_XOR,
158                 [EXPR_BINARY_LOGICAL_AND]        = PREC_LOGICAL_AND,
159                 [EXPR_BINARY_LOGICAL_OR]         = PREC_LOGICAL_OR,
160                 [EXPR_BINARY_SHIFTLEFT]          = PREC_SHIFT,
161                 [EXPR_BINARY_SHIFTRIGHT]         = PREC_SHIFT,
162                 [EXPR_BINARY_ASSIGN]             = PREC_ASSIGNMENT,
163                 [EXPR_BINARY_MUL_ASSIGN]         = PREC_ASSIGNMENT,
164                 [EXPR_BINARY_DIV_ASSIGN]         = PREC_ASSIGNMENT,
165                 [EXPR_BINARY_MOD_ASSIGN]         = PREC_ASSIGNMENT,
166                 [EXPR_BINARY_ADD_ASSIGN]         = PREC_ASSIGNMENT,
167                 [EXPR_BINARY_SUB_ASSIGN]         = PREC_ASSIGNMENT,
168                 [EXPR_BINARY_SHIFTLEFT_ASSIGN]   = PREC_ASSIGNMENT,
169                 [EXPR_BINARY_SHIFTRIGHT_ASSIGN]  = PREC_ASSIGNMENT,
170                 [EXPR_BINARY_BITWISE_AND_ASSIGN] = PREC_ASSIGNMENT,
171                 [EXPR_BINARY_BITWISE_XOR_ASSIGN] = PREC_ASSIGNMENT,
172                 [EXPR_BINARY_BITWISE_OR_ASSIGN]  = PREC_ASSIGNMENT,
173                 [EXPR_BINARY_COMMA]              = PREC_EXPRESSION,
174
175                 [EXPR_BINARY_ISGREATER]          = PREC_PRIMARY,
176                 [EXPR_BINARY_ISGREATEREQUAL]     = PREC_PRIMARY,
177                 [EXPR_BINARY_ISLESS]             = PREC_PRIMARY,
178                 [EXPR_BINARY_ISLESSEQUAL]        = PREC_PRIMARY,
179                 [EXPR_BINARY_ISLESSGREATER]      = PREC_PRIMARY,
180                 [EXPR_BINARY_ISUNORDERED]        = PREC_PRIMARY
181         };
182         assert((size_t)kind < lengthof(prec));
183         unsigned res = prec[kind];
184
185         assert(res != PREC_BOTTOM);
186         return res;
187 }
188
189 /**
190  * Print a constant expression.
191  *
192  * @param cnst  the constant expression
193  */
194 static void print_const(const const_expression_t *cnst)
195 {
196         if (cnst->base.type == NULL)
197                 return;
198
199         const type_t *const type = skip_typeref(cnst->base.type);
200
201         if (is_type_atomic(type, ATOMIC_TYPE_BOOL)) {
202                 fputs(cnst->v.int_value ? "true" : "false", out);
203         } else if (is_type_integer(type)) {
204                 fprintf(out, "%lld", cnst->v.int_value);
205         } else if (is_type_float(type)) {
206                 long double const val = cnst->v.float_value;
207 #ifdef _WIN32
208                 /* ARG, no way to print long double */
209                 fprintf(out, "%.20g", (double)val);
210 #else
211                 fprintf(out, "%.20Lg", val);
212 #endif
213                 if (isfinite(val) && truncl(val) == val)
214                         fputs(".0", out);
215         } else {
216                 panic("unknown constant");
217         }
218
219         char const* suffix;
220         switch (type->atomic.akind) {
221                 case ATOMIC_TYPE_UINT:        suffix = "U";   break;
222                 case ATOMIC_TYPE_LONG:        suffix = "L";   break;
223                 case ATOMIC_TYPE_ULONG:       suffix = "UL";  break;
224                 case ATOMIC_TYPE_LONGLONG:    suffix = "LL";  break;
225                 case ATOMIC_TYPE_ULONGLONG:   suffix = "ULL"; break;
226                 case ATOMIC_TYPE_FLOAT:       suffix = "F";   break;
227                 case ATOMIC_TYPE_LONG_DOUBLE: suffix = "L";   break;
228
229                 default: return;
230         }
231         fputs(suffix, out);
232 }
233
234 /**
235  * Print a quoted string constant.
236  *
237  * @param string  the string constant
238  * @param border  the border char
239  * @param skip    number of chars to skip at the end
240  */
241 static void print_quoted_string(const string_t *const string, char border, int skip)
242 {
243         fputc(border, out);
244         const char *end = string->begin + string->size - skip;
245         for (const char *c = string->begin; c != end; ++c) {
246                 unsigned char const tc = *c;
247                 if (tc == border) {
248                         fputc('\\', out);
249                 }
250                 switch (tc) {
251                 case '\\':  fputs("\\\\", out); break;
252                 case '\a':  fputs("\\a", out); break;
253                 case '\b':  fputs("\\b", out); break;
254                 case '\f':  fputs("\\f", out); break;
255                 case '\n':  fputs("\\n", out); break;
256                 case '\r':  fputs("\\r", out); break;
257                 case '\t':  fputs("\\t", out); break;
258                 case '\v':  fputs("\\v", out); break;
259                 case '\?':  fputs("\\?", out); break;
260                 case 27:
261                         if (c_mode & _GNUC) {
262                                 fputs("\\e", out); break;
263                         }
264                         /* FALLTHROUGH */
265                 default:
266                         if (tc < 0x80 && !isprint(tc)) {
267                                 fprintf(out, "\\%03o", (unsigned)tc);
268                         } else {
269                                 fputc(tc, out);
270                         }
271                         break;
272                 }
273         }
274         fputc(border, out);
275 }
276
277 /**
278  * Prints a wide string literal expression.
279  *
280  * @param wstr    the wide string literal expression
281  * @param border  the border char
282  * @param skip    number of chars to skip at the end
283  */
284 static void print_quoted_wide_string(const wide_string_t *const wstr,
285                                      char border, int skip)
286 {
287         fputc('L', out);
288         fputc(border, out);
289         const wchar_rep_t *end = wstr->begin + wstr->size - skip;
290         for (const wchar_rep_t *c = wstr->begin; c != end; ++c) {
291                 switch (*c) {
292                         case L'\"':  fputs("\\\"", out); break;
293                         case L'\\':  fputs("\\\\", out); break;
294                         case L'\a':  fputs("\\a",  out); break;
295                         case L'\b':  fputs("\\b",  out); break;
296                         case L'\f':  fputs("\\f",  out); break;
297                         case L'\n':  fputs("\\n",  out); break;
298                         case L'\r':  fputs("\\r",  out); break;
299                         case L'\t':  fputs("\\t",  out); break;
300                         case L'\v':  fputs("\\v",  out); break;
301                         case L'\?':  fputs("\\?",  out); break;
302                         case 27:
303                                 if (c_mode & _GNUC) {
304                                         fputs("\\e", out); break;
305                                 }
306                                 /* FALLTHROUGH */
307                         default: {
308                                 const unsigned tc = *c;
309                                 if (tc < 0x80U) {
310                                         if (isprint(*c)) {
311                                                 fputc(*c, out);
312                                         } else {
313                                                 fprintf(out, "\\%03o", tc);
314                                         }
315                                 } else if (tc < 0x800) {
316                                         fputc(0xC0 | (tc >> 6),   out);
317                                         fputc(0x80 | (tc & 0x3F), out);
318                                 } else if (tc < 0x10000) {
319                                         fputc(0xE0 | ( tc >> 12),         out);
320                                         fputc(0x80 | ((tc >>  6) & 0x3F), out);
321                                         fputc(0x80 | ( tc        & 0x3F), out);
322                                 } else {
323                                         fputc(0xF0 | ( tc >> 18),         out);
324                                         fputc(0x80 | ((tc >> 12) & 0x3F), out);
325                                         fputc(0x80 | ((tc >>  6) & 0x3F), out);
326                                         fputc(0x80 | ( tc        & 0x3F), out);
327                                 }
328                         }
329                 }
330         }
331         fputc(border, out);
332 }
333
334 /**
335  * Print a constant character expression.
336  *
337  * @param cnst  the constant character expression
338  */
339 static void print_character_constant(const const_expression_t *cnst)
340 {
341         print_quoted_string(&cnst->v.character, '\'', 0);
342 }
343
344 static void print_wide_character_constant(const const_expression_t *cnst)
345 {
346         print_quoted_wide_string(&cnst->v.wide_character, '\'', 0);
347 }
348
349 /**
350  * Prints a string literal expression.
351  *
352  * @param string_literal  the string literal expression
353  */
354 static void print_string_literal(
355                 const string_literal_expression_t *string_literal)
356 {
357         print_quoted_string(&string_literal->value, '"', 1);
358 }
359
360 /**
361  * Prints a predefined symbol.
362  */
363 static void print_funcname(const funcname_expression_t *funcname)
364 {
365         const char *s = "";
366         switch (funcname->kind) {
367         case FUNCNAME_FUNCTION:        s = (c_mode & _C99) ? "__func__" : "__FUNCTION__"; break;
368         case FUNCNAME_PRETTY_FUNCTION: s = "__PRETTY_FUNCTION__"; break;
369         case FUNCNAME_FUNCSIG:         s = "__FUNCSIG__"; break;
370         case FUNCNAME_FUNCDNAME:       s = "__FUNCDNAME__"; break;
371         }
372         fputs(s, out);
373 }
374
375 static void print_wide_string_literal(
376         const wide_string_literal_expression_t *const wstr)
377 {
378         print_quoted_wide_string(&wstr->value, '"', 1);
379 }
380
381 static void print_compound_literal(
382                 const compound_literal_expression_t *expression)
383 {
384         fputc('(', out);
385         print_type(expression->type);
386         fputc(')', out);
387         print_initializer(expression->initializer);
388 }
389
390 static void print_assignment_expression(const expression_t *const expr)
391 {
392         print_expression_prec(expr, PREC_ASSIGNMENT);
393 }
394
395 /**
396  * Prints a call expression.
397  *
398  * @param call  the call expression
399  */
400 static void print_call_expression(const call_expression_t *call)
401 {
402         unsigned prec = get_expression_precedence(call->base.kind);
403         print_expression_prec(call->function, prec);
404         fputc('(', out);
405         call_argument_t *argument = call->arguments;
406         int              first    = 1;
407         while (argument != NULL) {
408                 if (!first) {
409                         fputs(", ", out);
410                 } else {
411                         first = 0;
412                 }
413                 print_assignment_expression(argument->expression);
414
415                 argument = argument->next;
416         }
417         fputc(')', out);
418 }
419
420 /**
421  * Prints a binary expression.
422  *
423  * @param binexpr   the binary expression
424  */
425 static void print_binary_expression(const binary_expression_t *binexpr)
426 {
427         unsigned prec = get_expression_precedence(binexpr->base.kind);
428         int      r2l  = right_to_left(prec);
429
430         print_expression_prec(binexpr->left, prec + r2l);
431         char const* op;
432         switch (binexpr->base.kind) {
433         case EXPR_BINARY_COMMA:              op = ", ";    break;
434         case EXPR_BINARY_ASSIGN:             op = " = ";   break;
435         case EXPR_BINARY_ADD:                op = " + ";   break;
436         case EXPR_BINARY_SUB:                op = " - ";   break;
437         case EXPR_BINARY_MUL:                op = " * ";   break;
438         case EXPR_BINARY_MOD:                op = " % ";   break;
439         case EXPR_BINARY_DIV:                op = " / ";   break;
440         case EXPR_BINARY_BITWISE_OR:         op = " | ";   break;
441         case EXPR_BINARY_BITWISE_AND:        op = " & ";   break;
442         case EXPR_BINARY_BITWISE_XOR:        op = " ^ ";   break;
443         case EXPR_BINARY_LOGICAL_OR:         op = " || ";  break;
444         case EXPR_BINARY_LOGICAL_AND:        op = " && ";  break;
445         case EXPR_BINARY_NOTEQUAL:           op = " != ";  break;
446         case EXPR_BINARY_EQUAL:              op = " == ";  break;
447         case EXPR_BINARY_LESS:               op = " < ";   break;
448         case EXPR_BINARY_LESSEQUAL:          op = " <= ";  break;
449         case EXPR_BINARY_GREATER:            op = " > ";   break;
450         case EXPR_BINARY_GREATEREQUAL:       op = " >= ";  break;
451         case EXPR_BINARY_SHIFTLEFT:          op = " << ";  break;
452         case EXPR_BINARY_SHIFTRIGHT:         op = " >> ";  break;
453
454         case EXPR_BINARY_ADD_ASSIGN:         op = " += ";  break;
455         case EXPR_BINARY_SUB_ASSIGN:         op = " -= ";  break;
456         case EXPR_BINARY_MUL_ASSIGN:         op = " *= ";  break;
457         case EXPR_BINARY_MOD_ASSIGN:         op = " %= ";  break;
458         case EXPR_BINARY_DIV_ASSIGN:         op = " /= ";  break;
459         case EXPR_BINARY_BITWISE_OR_ASSIGN:  op = " |= ";  break;
460         case EXPR_BINARY_BITWISE_AND_ASSIGN: op = " &= ";  break;
461         case EXPR_BINARY_BITWISE_XOR_ASSIGN: op = " ^= ";  break;
462         case EXPR_BINARY_SHIFTLEFT_ASSIGN:   op = " <<= "; break;
463         case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  op = " >>= "; break;
464         default: panic("invalid binexpression found");
465         }
466         fputs(op, out);
467         print_expression_prec(binexpr->right, prec + 1 - r2l);
468 }
469
470 /**
471  * Prints an unary expression.
472  *
473  * @param unexpr   the unary expression
474  */
475 static void print_unary_expression(const unary_expression_t *unexpr)
476 {
477         unsigned prec = get_expression_precedence(unexpr->base.kind);
478         switch (unexpr->base.kind) {
479         case EXPR_UNARY_NEGATE:           fputc('-',          out); break;
480         case EXPR_UNARY_PLUS:             fputc('+',          out); break;
481         case EXPR_UNARY_NOT:              fputc('!',          out); break;
482         case EXPR_UNARY_BITWISE_NEGATE:   fputc('~',          out); break;
483         case EXPR_UNARY_PREFIX_INCREMENT: fputs("++",         out); break;
484         case EXPR_UNARY_PREFIX_DECREMENT: fputs("--",         out); break;
485         case EXPR_UNARY_DEREFERENCE:      fputc('*',          out); break;
486         case EXPR_UNARY_TAKE_ADDRESS:     fputc('&',          out); break;
487         case EXPR_UNARY_DELETE:           fputs("delete ",    out); break;
488         case EXPR_UNARY_DELETE_ARRAY:     fputs("delete [] ", out); break;
489
490         case EXPR_UNARY_POSTFIX_INCREMENT:
491                 print_expression_prec(unexpr->value, prec);
492                 fputs("++", out);
493                 return;
494         case EXPR_UNARY_POSTFIX_DECREMENT:
495                 print_expression_prec(unexpr->value, prec);
496                 fputs("--", out);
497                 return;
498         case EXPR_UNARY_CAST_IMPLICIT:
499         case EXPR_UNARY_CAST:
500                 fputc('(', out);
501                 print_type(unexpr->base.type);
502                 fputc(')', out);
503                 break;
504         case EXPR_UNARY_ASSUME:
505                 fputs("__assume(", out);
506                 print_assignment_expression(unexpr->value);
507                 fputc(')', out);
508                 return;
509
510         case EXPR_UNARY_THROW:
511                 if (unexpr->value == NULL) {
512                         fputs("throw", out);
513                         return;
514                 }
515                 fputs("throw ", out);
516                 break;
517
518         default:
519                 panic("invalid unary expression found");
520         }
521         print_expression_prec(unexpr->value, prec);
522 }
523
524 /**
525  * Prints a reference expression.
526  *
527  * @param ref   the reference expression
528  */
529 static void print_reference_expression(const reference_expression_t *ref)
530 {
531         fputs(ref->entity->base.symbol->string, out);
532 }
533
534 /**
535  * Prints a label address expression.
536  *
537  * @param ref   the reference expression
538  */
539 static void print_label_address_expression(const label_address_expression_t *le)
540 {
541         fprintf(out, "&&%s", le->label->base.symbol->string);
542 }
543
544 /**
545  * Prints an array expression.
546  *
547  * @param expression   the array expression
548  */
549 static void print_array_expression(const array_access_expression_t *expression)
550 {
551         unsigned prec = get_expression_precedence(expression->base.kind);
552         if (!expression->flipped) {
553                 print_expression_prec(expression->array_ref, prec);
554                 fputc('[', out);
555                 print_expression(expression->index);
556                 fputc(']', out);
557         } else {
558                 print_expression_prec(expression->index, prec);
559                 fputc('[', out);
560                 print_expression(expression->array_ref);
561                 fputc(']', out);
562         }
563 }
564
565 /**
566  * Prints a typeproperty expression (sizeof or __alignof__).
567  *
568  * @param expression   the type property expression
569  */
570 static void print_typeprop_expression(const typeprop_expression_t *expression)
571 {
572         if (expression->base.kind == EXPR_SIZEOF) {
573                 fputs("sizeof", out);
574         } else {
575                 assert(expression->base.kind == EXPR_ALIGNOF);
576                 fputs("__alignof__", out);
577         }
578         if (expression->tp_expression != NULL) {
579                 /* always print the '()' here, sizeof x is right but unusual */
580                 fputc('(', out);
581                 print_expression(expression->tp_expression);
582                 fputc(')', out);
583         } else {
584                 fputc('(', out);
585                 print_type(expression->type);
586                 fputc(')', out);
587         }
588 }
589
590 /**
591  * Prints an builtin symbol.
592  *
593  * @param expression   the builtin symbol expression
594  */
595 static void print_builtin_symbol(const builtin_symbol_expression_t *expression)
596 {
597         fputs(expression->symbol->string, out);
598 }
599
600 /**
601  * Prints a builtin constant expression.
602  *
603  * @param expression   the builtin constant expression
604  */
605 static void print_builtin_constant(const builtin_constant_expression_t *expression)
606 {
607         fputs("__builtin_constant_p(", out);
608         print_assignment_expression(expression->value);
609         fputc(')', out);
610 }
611
612 /**
613  * Prints a builtin address expression.
614  *
615  * @param expression   the builtin address expression
616  */
617 static void print_builtin_address(const builtin_address_expression_t *expression)
618 {
619         fputs(expression->kind == builtin_return_address ?
620                 "__builtin_return_address(" : "__builtin_frame_address(", out);
621         print_assignment_expression(expression->value);
622         fputc(')', out);
623 }
624
625 /**
626  * Prints a builtin prefetch expression.
627  *
628  * @param expression   the builtin prefetch expression
629  */
630 static void print_builtin_prefetch(const builtin_prefetch_expression_t *expression)
631 {
632         fputs("__builtin_prefetch(", out);
633         print_assignment_expression(expression->adr);
634         if (expression->rw) {
635                 fputc(',', out);
636                 print_assignment_expression(expression->rw);
637         }
638         if (expression->locality) {
639                 fputc(',', out);
640                 print_assignment_expression(expression->locality);
641         }
642         fputc(')', out);
643 }
644
645 /**
646  * Prints a conditional expression.
647  *
648  * @param expression   the conditional expression
649  */
650 static void print_conditional(const conditional_expression_t *expression)
651 {
652         print_expression_prec(expression->condition, PREC_LOGICAL_OR);
653         fputs(" ? ", out);
654         if (expression->true_expression != NULL) {
655                 print_expression_prec(expression->true_expression, PREC_EXPRESSION);
656                 fputs(" : ", out);
657         } else {
658                 fputs(": ", out);
659         }
660         precedence_t prec = c_mode & _CXX ? PREC_ASSIGNMENT : PREC_CONDITIONAL;
661         print_expression_prec(expression->false_expression, prec);
662 }
663
664 /**
665  * Prints a va_start expression.
666  *
667  * @param expression   the va_start expression
668  */
669 static void print_va_start(const va_start_expression_t *const expression)
670 {
671         fputs("__builtin_va_start(", out);
672         print_assignment_expression(expression->ap);
673         fputs(", ", out);
674         fputs(expression->parameter->base.base.symbol->string, out);
675         fputc(')', out);
676 }
677
678 /**
679  * Prints a va_arg expression.
680  *
681  * @param expression   the va_arg expression
682  */
683 static void print_va_arg(const va_arg_expression_t *expression)
684 {
685         fputs("__builtin_va_arg(", out);
686         print_assignment_expression(expression->ap);
687         fputs(", ", out);
688         print_type(expression->base.type);
689         fputc(')', out);
690 }
691
692 /**
693  * Prints a select expression (. or ->).
694  *
695  * @param expression   the select expression
696  */
697 static void print_select(const select_expression_t *expression)
698 {
699         unsigned prec = get_expression_precedence(expression->base.kind);
700         print_expression_prec(expression->compound, prec);
701         if (is_type_pointer(skip_typeref(expression->compound->base.type))) {
702                 fputs("->", out);
703         } else {
704                 fputc('.', out);
705         }
706         fputs(expression->compound_entry->base.symbol->string, out);
707 }
708
709 /**
710  * Prints a type classify expression.
711  *
712  * @param expr   the type classify expression
713  */
714 static void print_classify_type_expression(
715         const classify_type_expression_t *const expr)
716 {
717         fputs("__builtin_classify_type(", out);
718         print_assignment_expression(expr->type_expression);
719         fputc(')', out);
720 }
721
722 /**
723  * Prints a designator.
724  *
725  * @param designator  the designator
726  */
727 static void print_designator(const designator_t *designator)
728 {
729         for ( ; designator != NULL; designator = designator->next) {
730                 if (designator->symbol == NULL) {
731                         fputc('[', out);
732                         print_expression(designator->array_index);
733                         fputc(']', out);
734                 } else {
735                         fputc('.', out);
736                         fputs(designator->symbol->string, out);
737                 }
738         }
739 }
740
741 /**
742  * Prints an offsetof expression.
743  *
744  * @param expression   the offset expression
745  */
746 static void print_offsetof_expression(const offsetof_expression_t *expression)
747 {
748         fputs("__builtin_offsetof", out);
749         fputc('(', out);
750         print_type(expression->type);
751         fputc(',', out);
752         print_designator(expression->designator);
753         fputc(')', out);
754 }
755
756 /**
757  * Prints a statement expression.
758  *
759  * @param expression   the statement expression
760  */
761 static void print_statement_expression(const statement_expression_t *expression)
762 {
763         fputc('(', out);
764         print_statement(expression->statement);
765         fputc(')', out);
766 }
767
768 /**
769  * Prints an expression with parenthesis if needed.
770  *
771  * @param expression  the expression to print
772  * @param top_prec    the precedence of the user of this expression.
773  */
774 static void print_expression_prec(const expression_t *expression, unsigned top_prec)
775 {
776         if (expression->kind == EXPR_UNARY_CAST_IMPLICIT && !print_implicit_casts) {
777                 expression = expression->unary.value;
778         }
779
780         bool parenthesized =
781                 expression->base.parenthesized                 ||
782                 (print_parenthesis && top_prec != PREC_BOTTOM) ||
783                 top_prec > get_expression_precedence(expression->base.kind);
784
785         if (parenthesized)
786                 fputc('(', out);
787         switch (expression->kind) {
788         case EXPR_UNKNOWN:
789         case EXPR_INVALID:
790                 fputs("$invalid expression$", out);
791                 break;
792         case EXPR_CHARACTER_CONSTANT:
793                 print_character_constant(&expression->conste);
794                 break;
795         case EXPR_WIDE_CHARACTER_CONSTANT:
796                 print_wide_character_constant(&expression->conste);
797                 break;
798         case EXPR_CONST:
799                 print_const(&expression->conste);
800                 break;
801         case EXPR_FUNCNAME:
802                 print_funcname(&expression->funcname);
803                 break;
804         case EXPR_STRING_LITERAL:
805                 print_string_literal(&expression->string);
806                 break;
807         case EXPR_WIDE_STRING_LITERAL:
808                 print_wide_string_literal(&expression->wide_string);
809                 break;
810         case EXPR_COMPOUND_LITERAL:
811                 print_compound_literal(&expression->compound_literal);
812                 break;
813         case EXPR_CALL:
814                 print_call_expression(&expression->call);
815                 break;
816         EXPR_BINARY_CASES
817                 print_binary_expression(&expression->binary);
818                 break;
819         case EXPR_REFERENCE:
820         case EXPR_REFERENCE_ENUM_VALUE:
821                 print_reference_expression(&expression->reference);
822                 break;
823         case EXPR_ARRAY_ACCESS:
824                 print_array_expression(&expression->array_access);
825                 break;
826         case EXPR_LABEL_ADDRESS:
827                 print_label_address_expression(&expression->label_address);
828                 break;
829         EXPR_UNARY_CASES
830                 print_unary_expression(&expression->unary);
831                 break;
832         case EXPR_SIZEOF:
833         case EXPR_ALIGNOF:
834                 print_typeprop_expression(&expression->typeprop);
835                 break;
836         case EXPR_BUILTIN_SYMBOL:
837                 print_builtin_symbol(&expression->builtin_symbol);
838                 break;
839         case EXPR_BUILTIN_CONSTANT_P:
840                 print_builtin_constant(&expression->builtin_constant);
841                 break;
842         case EXPR_BUILTIN_ADDRESS:
843                 print_builtin_address(&expression->builtin_address);
844                 break;
845         case EXPR_BUILTIN_PREFETCH:
846                 print_builtin_prefetch(&expression->builtin_prefetch);
847                 break;
848         case EXPR_CONDITIONAL:
849                 print_conditional(&expression->conditional);
850                 break;
851         case EXPR_VA_START:
852                 print_va_start(&expression->va_starte);
853                 break;
854         case EXPR_VA_ARG:
855                 print_va_arg(&expression->va_arge);
856                 break;
857         case EXPR_SELECT:
858                 print_select(&expression->select);
859                 break;
860         case EXPR_CLASSIFY_TYPE:
861                 print_classify_type_expression(&expression->classify_type);
862                 break;
863         case EXPR_OFFSETOF:
864                 print_offsetof_expression(&expression->offsetofe);
865                 break;
866         case EXPR_STATEMENT:
867                 print_statement_expression(&expression->statement);
868                 break;
869
870         default:
871                 /* TODO */
872                 fprintf(out, "some expression of type %d", (int)expression->kind);
873                 break;
874         }
875         if (parenthesized)
876                 fputc(')', out);
877 }
878
879 /**
880  * Print an compound statement.
881  *
882  * @param block  the compound statement
883  */
884 static void print_compound_statement(const compound_statement_t *block)
885 {
886         fputs("{\n", out);
887         ++indent;
888
889         statement_t *statement = block->statements;
890         while (statement != NULL) {
891                 if (statement->base.kind == STATEMENT_CASE_LABEL)
892                         --indent;
893                 if (statement->kind != STATEMENT_LABEL)
894                         print_indent();
895                 print_statement(statement);
896
897                 statement = statement->base.next;
898         }
899         --indent;
900         print_indent();
901         fputs(block->stmt_expr ? "}" : "}\n", out);
902 }
903
904 /**
905  * Print a return statement.
906  *
907  * @param statement  the return statement
908  */
909 static void print_return_statement(const return_statement_t *statement)
910 {
911         expression_t const *const val = statement->value;
912         if (val != NULL) {
913                 fputs("return ", out);
914                 print_expression(val);
915                 fputs(";\n", out);
916         } else {
917                 fputs("return;\n", out);
918         }
919 }
920
921 /**
922  * Print an expression statement.
923  *
924  * @param statement  the expression statement
925  */
926 static void print_expression_statement(const expression_statement_t *statement)
927 {
928         print_expression(statement->expression);
929         fputs(";\n", out);
930 }
931
932 /**
933  * Print a goto statement.
934  *
935  * @param statement  the goto statement
936  */
937 static void print_goto_statement(const goto_statement_t *statement)
938 {
939         fputs("goto ", out);
940         if (statement->expression != NULL) {
941                 fputc('*', out);
942                 print_expression(statement->expression);
943         } else {
944                 fputs(statement->label->base.symbol->string, out);
945         }
946         fputs(";\n", out);
947 }
948
949 /**
950  * Print a label statement.
951  *
952  * @param statement  the label statement
953  */
954 static void print_label_statement(const label_statement_t *statement)
955 {
956         fprintf(out, "%s:\n", statement->label->base.symbol->string);
957         print_indent();
958         print_statement(statement->statement);
959 }
960
961 /**
962  * Print an if statement.
963  *
964  * @param statement  the if statement
965  */
966 static void print_if_statement(const if_statement_t *statement)
967 {
968         fputs("if (", out);
969         print_expression(statement->condition);
970         fputs(") ", out);
971         print_statement(statement->true_statement);
972
973         if (statement->false_statement != NULL) {
974                 print_indent();
975                 fputs("else ", out);
976                 print_statement(statement->false_statement);
977         }
978 }
979
980 /**
981  * Print a switch statement.
982  *
983  * @param statement  the switch statement
984  */
985 static void print_switch_statement(const switch_statement_t *statement)
986 {
987         fputs("switch (", out);
988         print_expression(statement->expression);
989         fputs(") ", out);
990         print_statement(statement->body);
991 }
992
993 /**
994  * Print a case label (including the default label).
995  *
996  * @param statement  the case label statement
997  */
998 static void print_case_label(const case_label_statement_t *statement)
999 {
1000         if (statement->expression == NULL) {
1001                 fputs("default:\n", out);
1002         } else {
1003                 fputs("case ", out);
1004                 print_expression(statement->expression);
1005                 if (statement->end_range != NULL) {
1006                         fputs(" ... ", out);
1007                         print_expression(statement->end_range);
1008                 }
1009                 fputs(":\n", out);
1010         }
1011         ++indent;
1012         if (statement->statement != NULL) {
1013                 if (statement->statement->base.kind == STATEMENT_CASE_LABEL) {
1014                         --indent;
1015                 }
1016                 print_indent();
1017                 print_statement(statement->statement);
1018         }
1019 }
1020
1021 static void print_typedef(const entity_t *entity)
1022 {
1023         fputs("typedef ", out);
1024         print_type_ext(entity->typedefe.type, entity->base.symbol, NULL);
1025         fputc(';', out);
1026 }
1027
1028 /**
1029  * returns true if the entity is a compiler generated one and has no real
1030  * correspondenc in the source file
1031  */
1032 static bool is_generated_entity(const entity_t *entity)
1033 {
1034         if (entity->kind == ENTITY_TYPEDEF)
1035                 return entity->typedefe.builtin;
1036
1037         if (is_declaration(entity))
1038                 return entity->declaration.implicit;
1039
1040         return false;
1041 }
1042
1043 /**
1044  * Print a declaration statement.
1045  *
1046  * @param statement   the statement
1047  */
1048 static void print_declaration_statement(
1049                 const declaration_statement_t *statement)
1050 {
1051         bool first = true;
1052         entity_t *entity = statement->declarations_begin;
1053         if (entity == NULL) {
1054                 fputs("/* empty declaration statement */\n", out);
1055                 return;
1056         }
1057
1058         entity_t *const end = statement->declarations_end->base.next;
1059         for (; entity != end; entity = entity->base.next) {
1060                 if (entity->kind == ENTITY_ENUM_VALUE)
1061                         continue;
1062                 if (is_generated_entity(entity))
1063                         continue;
1064
1065                 if (!first) {
1066                         print_indent();
1067                 } else {
1068                         first = false;
1069                 }
1070
1071                 print_entity(entity);
1072                 fputc('\n', out);
1073         }
1074 }
1075
1076 /**
1077  * Print a while statement.
1078  *
1079  * @param statement   the statement
1080  */
1081 static void print_while_statement(const while_statement_t *statement)
1082 {
1083         fputs("while (", out);
1084         print_expression(statement->condition);
1085         fputs(") ", out);
1086         print_statement(statement->body);
1087 }
1088
1089 /**
1090  * Print a do-while statement.
1091  *
1092  * @param statement   the statement
1093  */
1094 static void print_do_while_statement(const do_while_statement_t *statement)
1095 {
1096         fputs("do ", out);
1097         print_statement(statement->body);
1098         print_indent();
1099         fputs("while (", out);
1100         print_expression(statement->condition);
1101         fputs(");\n", out);
1102 }
1103
1104 /**
1105  * Print a for statement.
1106  *
1107  * @param statement   the statement
1108  */
1109 static void print_for_statement(const for_statement_t *statement)
1110 {
1111         fputs("for (", out);
1112         entity_t *entity = statement->scope.entities;
1113         while (entity != NULL && is_generated_entity(entity))
1114                 entity = entity->base.next;
1115
1116         if (entity != NULL) {
1117                 assert(statement->initialisation == NULL);
1118                 assert(is_declaration(entity));
1119                 print_declaration(entity);
1120                 if (entity->base.next != NULL) {
1121                         panic("multiple declarations in for statement not supported yet");
1122                 }
1123         } else {
1124                 if (statement->initialisation) {
1125                         print_expression(statement->initialisation);
1126                 }
1127                 fputc(';', out);
1128         }
1129         if (statement->condition != NULL) {
1130                 fputc(' ', out);
1131                 print_expression(statement->condition);
1132         }
1133         fputc(';', out);
1134         if (statement->step != NULL) {
1135                 fputc(' ', out);
1136                 print_expression(statement->step);
1137         }
1138         fputs(") ", out);
1139         print_statement(statement->body);
1140 }
1141
1142 /**
1143  * Print assembler arguments.
1144  *
1145  * @param arguments   the arguments
1146  */
1147 static void print_asm_arguments(asm_argument_t *arguments)
1148 {
1149         asm_argument_t *argument = arguments;
1150         for (; argument != NULL; argument = argument->next) {
1151                 if (argument != arguments)
1152                         fputs(", ", out);
1153
1154                 if (argument->symbol) {
1155                         fprintf(out, "[%s] ", argument->symbol->string);
1156                 }
1157                 print_quoted_string(&argument->constraints, '"', 1);
1158                 fputs(" (", out);
1159                 print_expression(argument->expression);
1160                 fputc(')', out);
1161         }
1162 }
1163
1164 /**
1165  * Print assembler clobbers.
1166  *
1167  * @param clobbers   the clobbers
1168  */
1169 static void print_asm_clobbers(asm_clobber_t *clobbers)
1170 {
1171         asm_clobber_t *clobber = clobbers;
1172         for (; clobber != NULL; clobber = clobber->next) {
1173                 if (clobber != clobbers)
1174                         fputs(", ", out);
1175
1176                 print_quoted_string(&clobber->clobber, '"', 1);
1177         }
1178 }
1179
1180 /**
1181  * Print an assembler statement.
1182  *
1183  * @param statement   the statement
1184  */
1185 static void print_asm_statement(const asm_statement_t *statement)
1186 {
1187         fputs("asm ", out);
1188         if (statement->is_volatile) {
1189                 fputs("volatile ", out);
1190         }
1191         fputc('(', out);
1192         print_quoted_string(&statement->asm_text, '"', 1);
1193         if (statement->outputs  == NULL &&
1194             statement->inputs   == NULL &&
1195             statement->clobbers == NULL)
1196                 goto end_of_print_asm_statement;
1197
1198         fputs(" : ", out);
1199         print_asm_arguments(statement->outputs);
1200         if (statement->inputs == NULL && statement->clobbers == NULL)
1201                 goto end_of_print_asm_statement;
1202
1203         fputs(" : ", out);
1204         print_asm_arguments(statement->inputs);
1205         if (statement->clobbers == NULL)
1206                 goto end_of_print_asm_statement;
1207
1208         fputs(" : ", out);
1209         print_asm_clobbers(statement->clobbers);
1210
1211 end_of_print_asm_statement:
1212         fputs(");\n", out);
1213 }
1214
1215 /**
1216  * Print a microsoft __try statement.
1217  *
1218  * @param statement   the statement
1219  */
1220 static void print_ms_try_statement(const ms_try_statement_t *statement)
1221 {
1222         fputs("__try ", out);
1223         print_statement(statement->try_statement);
1224         print_indent();
1225         if (statement->except_expression != NULL) {
1226                 fputs("__except(", out);
1227                 print_expression(statement->except_expression);
1228                 fputs(") ", out);
1229         } else {
1230                 fputs("__finally ", out);
1231         }
1232         print_statement(statement->final_statement);
1233 }
1234
1235 /**
1236  * Print a microsoft __leave statement.
1237  *
1238  * @param statement   the statement
1239  */
1240 static void print_leave_statement(const leave_statement_t *statement)
1241 {
1242         (void)statement;
1243         fputs("__leave;\n", out);
1244 }
1245
1246 /**
1247  * Print a statement.
1248  *
1249  * @param statement   the statement
1250  */
1251 void print_statement(const statement_t *statement)
1252 {
1253         switch (statement->kind) {
1254         case STATEMENT_EMPTY:
1255                 fputs(";\n", out);
1256                 break;
1257         case STATEMENT_COMPOUND:
1258                 print_compound_statement(&statement->compound);
1259                 break;
1260         case STATEMENT_RETURN:
1261                 print_return_statement(&statement->returns);
1262                 break;
1263         case STATEMENT_EXPRESSION:
1264                 print_expression_statement(&statement->expression);
1265                 break;
1266         case STATEMENT_LABEL:
1267                 print_label_statement(&statement->label);
1268                 break;
1269         case STATEMENT_GOTO:
1270                 print_goto_statement(&statement->gotos);
1271                 break;
1272         case STATEMENT_CONTINUE:
1273                 fputs("continue;\n", out);
1274                 break;
1275         case STATEMENT_BREAK:
1276                 fputs("break;\n", out);
1277                 break;
1278         case STATEMENT_IF:
1279                 print_if_statement(&statement->ifs);
1280                 break;
1281         case STATEMENT_SWITCH:
1282                 print_switch_statement(&statement->switchs);
1283                 break;
1284         case STATEMENT_CASE_LABEL:
1285                 print_case_label(&statement->case_label);
1286                 break;
1287         case STATEMENT_DECLARATION:
1288                 print_declaration_statement(&statement->declaration);
1289                 break;
1290         case STATEMENT_WHILE:
1291                 print_while_statement(&statement->whiles);
1292                 break;
1293         case STATEMENT_DO_WHILE:
1294                 print_do_while_statement(&statement->do_while);
1295                 break;
1296         case STATEMENT_FOR:
1297                 print_for_statement(&statement->fors);
1298                 break;
1299         case STATEMENT_ASM:
1300                 print_asm_statement(&statement->asms);
1301                 break;
1302         case STATEMENT_MS_TRY:
1303                 print_ms_try_statement(&statement->ms_try);
1304                 break;
1305         case STATEMENT_LEAVE:
1306                 print_leave_statement(&statement->leave);
1307                 break;
1308         case STATEMENT_INVALID:
1309                 fputs("$invalid statement$\n", out);
1310                 break;
1311         }
1312 }
1313
1314 /**
1315  * Print a storage class.
1316  *
1317  * @param storage_class   the storage class
1318  */
1319 static void print_storage_class(storage_class_tag_t storage_class)
1320 {
1321         switch (storage_class) {
1322         case STORAGE_CLASS_NONE:     return;
1323         case STORAGE_CLASS_TYPEDEF:  fputs("typedef ",  out); return;
1324         case STORAGE_CLASS_EXTERN:   fputs("extern ",   out); return;
1325         case STORAGE_CLASS_STATIC:   fputs("static ",   out); return;
1326         case STORAGE_CLASS_AUTO:     fputs("auto ",     out); return;
1327         case STORAGE_CLASS_REGISTER: fputs("register ", out); return;
1328         }
1329         panic("invalid storage class");
1330 }
1331
1332 /**
1333  * Print an initializer.
1334  *
1335  * @param initializer  the initializer
1336  */
1337 void print_initializer(const initializer_t *initializer)
1338 {
1339         if (initializer == NULL) {
1340                 fputs("{}", out);
1341                 return;
1342         }
1343
1344         switch (initializer->kind) {
1345         case INITIALIZER_VALUE: {
1346                 const initializer_value_t *value = &initializer->value;
1347                 print_assignment_expression(value->value);
1348                 return;
1349         }
1350         case INITIALIZER_LIST: {
1351                 assert(initializer->kind == INITIALIZER_LIST);
1352                 fputs("{ ", out);
1353                 const initializer_list_t *list = &initializer->list;
1354
1355                 for (size_t i = 0 ; i < list->len; ++i) {
1356                         const initializer_t *sub_init = list->initializers[i];
1357                         print_initializer(list->initializers[i]);
1358                         if (i < list->len-1) {
1359                                 if (sub_init == NULL || sub_init->kind != INITIALIZER_DESIGNATOR)
1360                                         fputs(", ", out);
1361                         }
1362                 }
1363                 fputs(" }", out);
1364                 return;
1365         }
1366         case INITIALIZER_STRING:
1367                 print_quoted_string(&initializer->string.string, '"', 1);
1368                 return;
1369         case INITIALIZER_WIDE_STRING:
1370                 print_quoted_wide_string(&initializer->wide_string.string, '"', 1);
1371                 return;
1372         case INITIALIZER_DESIGNATOR:
1373                 print_designator(initializer->designator.designator);
1374                 fputs(" = ", out);
1375                 return;
1376         }
1377
1378         panic("invalid initializer kind found");
1379 }
1380
1381 /**
1382  * Print microsoft extended declaration modifiers.
1383  */
1384 static void print_ms_modifiers(const declaration_t *declaration)
1385 {
1386         if ((c_mode & _MS) == 0)
1387                 return;
1388
1389         decl_modifiers_t modifiers = declaration->modifiers;
1390
1391         bool        ds_shown = false;
1392         const char *next     = "(";
1393
1394         if (declaration->base.kind == ENTITY_VARIABLE) {
1395                 variable_t *variable = (variable_t*)declaration;
1396                 if (variable->alignment != 0
1397                                 || variable->get_property_sym != NULL
1398                                 || variable->put_property_sym != NULL) {
1399                         if (!ds_shown) {
1400                                 fputs("__declspec", out);
1401                                 ds_shown = true;
1402                         }
1403
1404                         if (variable->alignment != 0) {
1405                                 fputs(next, out); next = ", "; fprintf(out, "align(%u)", variable->alignment);
1406                         }
1407                         if (variable->get_property_sym != NULL
1408                                         || variable->put_property_sym != NULL) {
1409                                 char *comma = "";
1410                                 fputs(next, out); next = ", "; fputs("property(", out);
1411                                 if (variable->get_property_sym != NULL) {
1412                                         fprintf(out, "get=%s", variable->get_property_sym->string);
1413                                         comma = ", ";
1414                                 }
1415                                 if (variable->put_property_sym != NULL)
1416                                         fprintf(out, "%sput=%s", comma, variable->put_property_sym->string);
1417                                 fputc(')', out);
1418                         }
1419                 }
1420         }
1421
1422         /* DM_FORCEINLINE handled outside. */
1423         if ((modifiers & ~DM_FORCEINLINE) != 0) {
1424                 if (!ds_shown) {
1425                         fputs("__declspec", out);
1426                         ds_shown = true;
1427                 }
1428                 if (modifiers & DM_DLLIMPORT) {
1429                         fputs(next, out); next = ", "; fputs("dllimport", out);
1430                 }
1431                 if (modifiers & DM_DLLEXPORT) {
1432                         fputs(next, out); next = ", "; fputs("dllexport", out);
1433                 }
1434                 if (modifiers & DM_THREAD) {
1435                         fputs(next, out); next = ", "; fputs("thread", out);
1436                 }
1437                 if (modifiers & DM_NAKED) {
1438                         fputs(next, out); next = ", "; fputs("naked", out);
1439                 }
1440                 if (modifiers & DM_THREAD) {
1441                         fputs(next, out); next = ", "; fputs("thread", out);
1442                 }
1443                 if (modifiers & DM_SELECTANY) {
1444                         fputs(next, out); next = ", "; fputs("selectany", out);
1445                 }
1446                 if (modifiers & DM_NOTHROW) {
1447                         fputs(next, out); next = ", "; fputs("nothrow", out);
1448                 }
1449                 if (modifiers & DM_NORETURN) {
1450                         fputs(next, out); next = ", "; fputs("noreturn", out);
1451                 }
1452                 if (modifiers & DM_NOINLINE) {
1453                         fputs(next, out); next = ", "; fputs("noinline", out);
1454                 }
1455                 if (modifiers & DM_DEPRECATED) {
1456                         fputs(next, out); next = ", "; fputs("deprecated", out);
1457                         if (declaration->deprecated_string != NULL)
1458                                 fprintf(out, "(\"%s\")",
1459                                         declaration->deprecated_string);
1460                 }
1461                 if (modifiers & DM_RESTRICT) {
1462                         fputs(next, out); next = ", "; fputs("restrict", out);
1463                 }
1464                 if (modifiers & DM_NOALIAS) {
1465                         fputs(next, out); next = ", "; fputs("noalias", out);
1466                 }
1467         }
1468
1469         if (ds_shown)
1470                 fputs(") ", out);
1471 }
1472
1473 static void print_scope(const scope_t *scope)
1474 {
1475         const entity_t *entity = scope->entities;
1476         for ( ; entity != NULL; entity = entity->base.next) {
1477                 print_indent();
1478                 print_entity(entity);
1479                 fputs("\n", out);
1480         }
1481 }
1482
1483 static void print_namespace(const namespace_t *namespace)
1484 {
1485         fputs("namespace ", out);
1486         if (namespace->base.symbol != NULL) {
1487                 fputs(namespace->base.symbol->string, out);
1488                 fputc(' ', out);
1489         }
1490
1491         fputs("{\n", out);
1492         ++indent;
1493
1494         print_scope(&namespace->members);
1495
1496         --indent;
1497         print_indent();
1498         fputs("}\n", out);
1499 }
1500
1501 /**
1502  * Print a variable or function declaration
1503  */
1504 void print_declaration(const entity_t *entity)
1505 {
1506         assert(is_declaration(entity));
1507         const declaration_t *declaration = &entity->declaration;
1508
1509         print_storage_class((storage_class_tag_t)declaration->declared_storage_class);
1510         if (entity->kind == ENTITY_FUNCTION) {
1511                 function_t *function = (function_t*)declaration;
1512                 if (function->is_inline) {
1513                         if (declaration->modifiers & DM_FORCEINLINE) {
1514                                 fputs("__forceinline ", out);
1515                         } else if (declaration->modifiers & DM_MICROSOFT_INLINE) {
1516                                 fputs("__inline ", out);
1517                         } else {
1518                                 fputs("inline ", out);
1519                         }
1520                 }
1521         }
1522         print_ms_modifiers(declaration);
1523         switch (entity->kind) {
1524                 case ENTITY_FUNCTION:
1525                         print_type_ext(entity->declaration.type, entity->base.symbol,
1526                                         &entity->function.parameters);
1527
1528                         if (entity->function.statement != NULL) {
1529                                 fputc('\n', out);
1530                                 print_indent();
1531                                 print_statement(entity->function.statement);
1532                                 return;
1533                         }
1534                         break;
1535
1536                 case ENTITY_VARIABLE:
1537                         if (entity->variable.thread_local)
1538                                 fputs("__thread ", out);
1539                         print_type_ext(declaration->type, declaration->base.symbol, NULL);
1540                         if (entity->variable.initializer != NULL) {
1541                                 fputs(" = ", out);
1542                                 print_initializer(entity->variable.initializer);
1543                         }
1544                         break;
1545
1546                 default:
1547                         print_type_ext(declaration->type, declaration->base.symbol, NULL);
1548                         break;
1549         }
1550         fputc(';', out);
1551 }
1552
1553 /**
1554  * Prints an expression.
1555  *
1556  * @param expression  the expression
1557  */
1558 void print_expression(const expression_t *expression)
1559 {
1560         print_expression_prec(expression, PREC_BOTTOM);
1561 }
1562
1563 /**
1564  * Print a declaration.
1565  *
1566  * @param declaration  the declaration
1567  */
1568 void print_entity(const entity_t *entity)
1569 {
1570         if (entity->base.namespc != NAMESPACE_NORMAL && entity->base.symbol == NULL)
1571                 return;
1572
1573         switch ((entity_kind_tag_t)entity->kind) {
1574         case ENTITY_VARIABLE:
1575         case ENTITY_PARAMETER:
1576         case ENTITY_COMPOUND_MEMBER:
1577                 print_declaration(entity);
1578                 return;
1579         case ENTITY_FUNCTION:
1580                 print_declaration(entity);
1581                 return;
1582         case ENTITY_TYPEDEF:
1583                 print_typedef(entity);
1584                 return;
1585         case ENTITY_STRUCT:
1586                 fputs("struct ", out);
1587                 fputs(entity->base.symbol->string, out);
1588                 if (entity->structe.complete) {
1589                         fputc(' ', out);
1590                         print_compound_definition(&entity->structe);
1591                 }
1592                 fputc(';', out);
1593                 return;
1594         case ENTITY_UNION:
1595                 fputs("union ", out);
1596                 fputs(entity->base.symbol->string, out);
1597                 if (entity->unione.complete) {
1598                         fputc(' ', out);
1599                         print_compound_definition(&entity->unione);
1600                 }
1601                 fputc(';', out);
1602                 return;
1603         case ENTITY_ENUM:
1604                 fputs("enum ", out);
1605                 fputs(entity->base.symbol->string, out);
1606                 fputc(' ', out);
1607                 print_enum_definition(&entity->enume);
1608                 fputc(';', out);
1609                 return;
1610         case ENTITY_NAMESPACE:
1611                 print_namespace(&entity->namespacee);
1612                 return;
1613         case ENTITY_LOCAL_LABEL:
1614                 fprintf(out, "__label__ %s;", entity->base.symbol->string);
1615                 return;
1616         case ENTITY_LABEL:
1617         case ENTITY_ENUM_VALUE:
1618                 panic("print_entity used on unexpected entity type");
1619         case ENTITY_INVALID:
1620                 break;
1621         }
1622         panic("Invalid entity type encountered");
1623 }
1624
1625 /**
1626  * Print the AST of a translation unit.
1627  *
1628  * @param unit   the translation unit
1629  */
1630 void print_ast(const translation_unit_t *unit)
1631 {
1632         inc_type_visited();
1633
1634         entity_t *entity = unit->scope.entities;
1635         for ( ; entity != NULL; entity = entity->base.next) {
1636                 if (entity->kind == ENTITY_ENUM_VALUE)
1637                         continue;
1638                 if (entity->base.namespc != NAMESPACE_NORMAL
1639                                 && entity->base.symbol == NULL)
1640                         continue;
1641                 if (is_generated_entity(entity))
1642                         continue;
1643
1644                 print_indent();
1645                 print_entity(entity);
1646                 fputc('\n', out);
1647         }
1648 }
1649
1650 bool is_constant_initializer(const initializer_t *initializer)
1651 {
1652         switch (initializer->kind) {
1653         case INITIALIZER_STRING:
1654         case INITIALIZER_WIDE_STRING:
1655         case INITIALIZER_DESIGNATOR:
1656                 return true;
1657
1658         case INITIALIZER_VALUE:
1659                 return is_constant_expression(initializer->value.value);
1660
1661         case INITIALIZER_LIST:
1662                 for (size_t i = 0; i < initializer->list.len; ++i) {
1663                         initializer_t *sub_initializer = initializer->list.initializers[i];
1664                         if (!is_constant_initializer(sub_initializer))
1665                                 return false;
1666                 }
1667                 return true;
1668         }
1669         panic("invalid initializer kind found");
1670 }
1671
1672 static bool is_object_with_linker_constant_address(const expression_t *expression)
1673 {
1674         switch (expression->kind) {
1675         case EXPR_UNARY_DEREFERENCE:
1676                 return is_address_constant(expression->unary.value);
1677
1678         case EXPR_SELECT: {
1679                 type_t *base_type = skip_typeref(expression->select.compound->base.type);
1680                 if (is_type_pointer(base_type)) {
1681                         /* it's a -> */
1682                         return is_address_constant(expression->select.compound);
1683                 } else {
1684                         return is_object_with_linker_constant_address(expression->select.compound);
1685                 }
1686         }
1687
1688         case EXPR_ARRAY_ACCESS:
1689                 return is_constant_expression(expression->array_access.index)
1690                         && is_address_constant(expression->array_access.array_ref);
1691
1692         case EXPR_REFERENCE: {
1693                 entity_t *entity = expression->reference.entity;
1694                 if (is_declaration(entity)) {
1695                         switch ((storage_class_tag_t)entity->declaration.storage_class) {
1696                         case STORAGE_CLASS_NONE:
1697                         case STORAGE_CLASS_EXTERN:
1698                         case STORAGE_CLASS_STATIC:
1699                                 return
1700                                         entity->kind != ENTITY_VARIABLE ||
1701                                         !entity->variable.thread_local;
1702
1703                         case STORAGE_CLASS_REGISTER:
1704                         case STORAGE_CLASS_TYPEDEF:
1705                         case STORAGE_CLASS_AUTO:
1706                                 break;
1707                         }
1708                 }
1709                 return false;
1710         }
1711
1712         default:
1713                 return false;
1714         }
1715 }
1716
1717 bool is_address_constant(const expression_t *expression)
1718 {
1719         switch (expression->kind) {
1720         case EXPR_UNARY_TAKE_ADDRESS:
1721                 return is_object_with_linker_constant_address(expression->unary.value);
1722
1723         case EXPR_UNARY_DEREFERENCE: {
1724                 type_t *real_type
1725                         = revert_automatic_type_conversion(expression->unary.value);
1726                 /* dereferencing a function is a NOP */
1727                 if (is_type_function(real_type)) {
1728                         return is_address_constant(expression->unary.value);
1729                 }
1730                 /* FALLTHROUGH */
1731         }
1732
1733         case EXPR_UNARY_CAST: {
1734                 type_t *dest = skip_typeref(expression->base.type);
1735                 if (!is_type_pointer(dest) && (
1736                         dest->kind != TYPE_ATOMIC                                               ||
1737                         !(get_atomic_type_flags(dest->atomic.akind) & ATOMIC_TYPE_FLAG_INTEGER) ||
1738                         get_atomic_type_size(dest->atomic.akind) < get_atomic_type_size(get_intptr_kind())
1739                     ))
1740                         return false;
1741
1742                 return (is_constant_expression(expression->unary.value)
1743                         || is_address_constant(expression->unary.value));
1744         }
1745
1746         case EXPR_BINARY_ADD:
1747         case EXPR_BINARY_SUB: {
1748                 expression_t *left  = expression->binary.left;
1749                 expression_t *right = expression->binary.right;
1750
1751                 if (is_type_pointer(skip_typeref(left->base.type))) {
1752                         return is_address_constant(left) && is_constant_expression(right);
1753                 } else if (is_type_pointer(skip_typeref(right->base.type))) {
1754                         return is_constant_expression(left)     && is_address_constant(right);
1755                 }
1756
1757                 return false;
1758         }
1759
1760         case EXPR_REFERENCE: {
1761                 entity_t *entity = expression->reference.entity;
1762                 if (!is_declaration(entity))
1763                         return false;
1764
1765                 type_t *type = skip_typeref(entity->declaration.type);
1766                 if (is_type_function(type))
1767                         return true;
1768                 if (is_type_array(type)) {
1769                         return is_object_with_linker_constant_address(expression);
1770                 }
1771                 /* Prevent stray errors */
1772                 if (!is_type_valid(type))
1773                         return true;
1774                 return false;
1775         }
1776
1777         case EXPR_ARRAY_ACCESS: {
1778                 type_t *const type =
1779                         skip_typeref(revert_automatic_type_conversion(expression));
1780                 return
1781                         is_type_array(type)                                    &&
1782                         is_constant_expression(expression->array_access.index) &&
1783                         is_address_constant(expression->array_access.array_ref);
1784         }
1785
1786         default:
1787                 return false;
1788         }
1789 }
1790
1791 static bool is_builtin_const_call(const expression_t *expression)
1792 {
1793         expression_t *function = expression->call.function;
1794         if (function->kind != EXPR_BUILTIN_SYMBOL) {
1795                 return false;
1796         }
1797
1798         symbol_t *symbol = function->builtin_symbol.symbol;
1799
1800         switch (symbol->ID) {
1801         case T___builtin_huge_val:
1802         case T___builtin_inf:
1803         case T___builtin_inff:
1804         case T___builtin_infl:
1805         case T___builtin_nan:
1806         case T___builtin_nanf:
1807         case T___builtin_nanl:
1808                 return true;
1809         }
1810
1811         return false;
1812 }
1813
1814 static bool is_constant_pointer(const expression_t *expression)
1815 {
1816         if (is_constant_expression(expression))
1817                 return true;
1818
1819         switch (expression->kind) {
1820         case EXPR_UNARY_CAST:
1821                 return is_constant_pointer(expression->unary.value);
1822         default:
1823                 return false;
1824         }
1825 }
1826
1827 static bool is_object_with_constant_address(const expression_t *expression)
1828 {
1829         switch (expression->kind) {
1830         case EXPR_SELECT: {
1831                 expression_t *compound      = expression->select.compound;
1832                 type_t       *compound_type = compound->base.type;
1833                 compound_type = skip_typeref(compound_type);
1834                 if (is_type_pointer(compound_type)) {
1835                         return is_constant_pointer(compound);
1836                 } else {
1837                         return is_object_with_constant_address(compound);
1838                 }
1839         }
1840
1841         case EXPR_ARRAY_ACCESS: {
1842                 array_access_expression_t const* const array_access =
1843                         &expression->array_access;
1844                 return
1845                         is_constant_expression(array_access->index) && (
1846                                 is_object_with_constant_address(array_access->array_ref) ||
1847                                 is_constant_pointer(array_access->array_ref)
1848                         );
1849         }
1850
1851         case EXPR_UNARY_DEREFERENCE:
1852                 return is_constant_pointer(expression->unary.value);
1853         default:
1854                 return false;
1855         }
1856 }
1857
1858 bool is_constant_expression(const expression_t *expression)
1859 {
1860         switch (expression->kind) {
1861
1862         case EXPR_CONST:
1863         case EXPR_CHARACTER_CONSTANT:
1864         case EXPR_WIDE_CHARACTER_CONSTANT:
1865         case EXPR_STRING_LITERAL:
1866         case EXPR_WIDE_STRING_LITERAL:
1867         case EXPR_CLASSIFY_TYPE:
1868         case EXPR_FUNCNAME:
1869         case EXPR_OFFSETOF:
1870         case EXPR_ALIGNOF:
1871         case EXPR_BUILTIN_CONSTANT_P:
1872         case EXPR_LABEL_ADDRESS:
1873         case EXPR_REFERENCE_ENUM_VALUE:
1874                 return true;
1875
1876         case EXPR_SIZEOF: {
1877                 type_t *type = expression->typeprop.type;
1878                 if (type == NULL)
1879                         type = expression->typeprop.tp_expression->base.type;
1880
1881                 type = skip_typeref(type);
1882                 if (is_type_array(type) && type->array.is_vla)
1883                         return false;
1884                 return true;
1885         }
1886
1887         case EXPR_BUILTIN_SYMBOL:
1888         case EXPR_BUILTIN_PREFETCH:
1889         case EXPR_BUILTIN_ADDRESS:
1890         case EXPR_SELECT:
1891         case EXPR_VA_START:
1892         case EXPR_VA_ARG:
1893         case EXPR_STATEMENT:
1894         case EXPR_REFERENCE:
1895         case EXPR_UNARY_POSTFIX_INCREMENT:
1896         case EXPR_UNARY_POSTFIX_DECREMENT:
1897         case EXPR_UNARY_PREFIX_INCREMENT:
1898         case EXPR_UNARY_PREFIX_DECREMENT:
1899         case EXPR_UNARY_ASSUME: /* has VOID type */
1900         case EXPR_UNARY_DEREFERENCE:
1901         case EXPR_UNARY_DELETE:
1902         case EXPR_UNARY_DELETE_ARRAY:
1903         case EXPR_UNARY_THROW:
1904         case EXPR_BINARY_ASSIGN:
1905         case EXPR_BINARY_MUL_ASSIGN:
1906         case EXPR_BINARY_DIV_ASSIGN:
1907         case EXPR_BINARY_MOD_ASSIGN:
1908         case EXPR_BINARY_ADD_ASSIGN:
1909         case EXPR_BINARY_SUB_ASSIGN:
1910         case EXPR_BINARY_SHIFTLEFT_ASSIGN:
1911         case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
1912         case EXPR_BINARY_BITWISE_AND_ASSIGN:
1913         case EXPR_BINARY_BITWISE_XOR_ASSIGN:
1914         case EXPR_BINARY_BITWISE_OR_ASSIGN:
1915         case EXPR_BINARY_COMMA:
1916         case EXPR_ARRAY_ACCESS:
1917                 return false;
1918
1919         case EXPR_UNARY_TAKE_ADDRESS:
1920                 return is_object_with_constant_address(expression->unary.value);
1921
1922         case EXPR_CALL:
1923                 return is_builtin_const_call(expression);
1924
1925         case EXPR_UNARY_NEGATE:
1926         case EXPR_UNARY_PLUS:
1927         case EXPR_UNARY_BITWISE_NEGATE:
1928         case EXPR_UNARY_NOT:
1929                 return is_constant_expression(expression->unary.value);
1930
1931         case EXPR_UNARY_CAST:
1932         case EXPR_UNARY_CAST_IMPLICIT:
1933                 return is_type_arithmetic(skip_typeref(expression->base.type))
1934                         && is_constant_expression(expression->unary.value);
1935
1936         case EXPR_BINARY_ADD:
1937         case EXPR_BINARY_SUB:
1938         case EXPR_BINARY_MUL:
1939         case EXPR_BINARY_DIV:
1940         case EXPR_BINARY_MOD:
1941         case EXPR_BINARY_EQUAL:
1942         case EXPR_BINARY_NOTEQUAL:
1943         case EXPR_BINARY_LESS:
1944         case EXPR_BINARY_LESSEQUAL:
1945         case EXPR_BINARY_GREATER:
1946         case EXPR_BINARY_GREATEREQUAL:
1947         case EXPR_BINARY_BITWISE_AND:
1948         case EXPR_BINARY_BITWISE_OR:
1949         case EXPR_BINARY_BITWISE_XOR:
1950         case EXPR_BINARY_SHIFTLEFT:
1951         case EXPR_BINARY_SHIFTRIGHT:
1952         case EXPR_BINARY_ISGREATER:
1953         case EXPR_BINARY_ISGREATEREQUAL:
1954         case EXPR_BINARY_ISLESS:
1955         case EXPR_BINARY_ISLESSEQUAL:
1956         case EXPR_BINARY_ISLESSGREATER:
1957         case EXPR_BINARY_ISUNORDERED:
1958                 return is_constant_expression(expression->binary.left)
1959                         && is_constant_expression(expression->binary.right);
1960
1961         case EXPR_BINARY_LOGICAL_AND: {
1962                 expression_t const *const left = expression->binary.left;
1963                 if (!is_constant_expression(left))
1964                         return false;
1965                 if (fold_constant(left) == 0)
1966                         return true;
1967                 return is_constant_expression(expression->binary.right);
1968         }
1969
1970         case EXPR_BINARY_LOGICAL_OR: {
1971                 expression_t const *const left = expression->binary.left;
1972                 if (!is_constant_expression(left))
1973                         return false;
1974                 if (fold_constant(left) != 0)
1975                         return true;
1976                 return is_constant_expression(expression->binary.right);
1977         }
1978
1979         case EXPR_COMPOUND_LITERAL:
1980                 return is_constant_initializer(expression->compound_literal.initializer);
1981
1982         case EXPR_CONDITIONAL: {
1983                 expression_t *condition = expression->conditional.condition;
1984                 if (!is_constant_expression(condition))
1985                         return false;
1986
1987                 long val = fold_constant(condition);
1988                 if (val != 0)
1989                         return is_constant_expression(expression->conditional.true_expression);
1990                 else
1991                         return is_constant_expression(expression->conditional.false_expression);
1992         }
1993
1994         case EXPR_INVALID:
1995                 return true;
1996
1997         case EXPR_UNKNOWN:
1998                 break;
1999         }
2000         panic("invalid expression found (is constant expression)");
2001 }
2002
2003 /**
2004  * Initialize the AST construction.
2005  */
2006 void init_ast(void)
2007 {
2008         obstack_init(&ast_obstack);
2009 }
2010
2011 /**
2012  * Free the AST.
2013  */
2014 void exit_ast(void)
2015 {
2016         obstack_free(&ast_obstack, NULL);
2017 }
2018
2019 /**
2020  * Set the output stream for the AST printer.
2021  *
2022  * @param stream  the output stream
2023  */
2024 void ast_set_output(FILE *stream)
2025 {
2026         out = stream;
2027         type_set_output(stream);
2028 }
2029
2030 /**
2031  * Allocate an AST object of the given size.
2032  *
2033  * @param size  the size of the object to allocate
2034  *
2035  * @return  A new allocated object in the AST memeory space.
2036  */
2037 void *(allocate_ast)(size_t size)
2038 {
2039         return _allocate_ast(size);
2040 }