Handle ?: in is_address_constant().
[cparser] / ast.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2009 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include "ast_t.h"
23 #include "symbol_t.h"
24 #include "type_t.h"
25 #include "parser.h"
26 #include "lang_features.h"
27 #include "entity_t.h"
28
29 #include <assert.h>
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <ctype.h>
33
34 #if defined(__INTEL_COMPILER)
35 #include <mathimf.h>
36 #elif defined(__CYGWIN__)
37 #include "win32/cygwin_math_ext.h"
38 #else
39 #include <math.h>
40 #endif
41
42 #include "adt/error.h"
43 #include "adt/util.h"
44
45 struct obstack ast_obstack;
46
47 static FILE *out;
48 static int   indent;
49
50 /** If set, implicit casts are printed. */
51 bool print_implicit_casts = false;
52
53 /** If set parenthesis are printed to indicate operator precedence. */
54 bool print_parenthesis = false;
55
56 static void print_statement(const statement_t *statement);
57 static void print_expression_prec(const expression_t *expression, unsigned prec);
58
59 void change_indent(int delta)
60 {
61         indent += delta;
62         assert(indent >= 0);
63 }
64
65 void print_indent(void)
66 {
67         for (int i = 0; i < indent; ++i)
68                 fputc('\t', out);
69 }
70
71 /**
72  * Returns 1 if a given precedence level has right-to-left
73  * associativity, else 0.
74  *
75  * @param precedence   the operator precedence
76  */
77 static int right_to_left(unsigned precedence)
78 {
79         switch (precedence) {
80                 case PREC_ASSIGNMENT:
81                 case PREC_CONDITIONAL:
82                 case PREC_UNARY:
83                         return 1;
84
85                 default:
86                         return 0;
87         }
88 }
89
90 /**
91  * Return the precedence of an expression given by its kind.
92  *
93  * @param kind   the expression kind
94  */
95 static unsigned get_expression_precedence(expression_kind_t kind)
96 {
97         static const unsigned prec[] = {
98                 [EXPR_UNKNOWN]                    = PREC_PRIMARY,
99                 [EXPR_INVALID]                    = PREC_PRIMARY,
100                 [EXPR_REFERENCE]                  = PREC_PRIMARY,
101                 [EXPR_REFERENCE_ENUM_VALUE]       = PREC_PRIMARY,
102                 [EXPR_CHARACTER_CONSTANT]         = PREC_PRIMARY,
103                 [EXPR_WIDE_CHARACTER_CONSTANT]    = PREC_PRIMARY,
104                 [EXPR_CONST]                      = PREC_PRIMARY,
105                 [EXPR_STRING_LITERAL]             = PREC_PRIMARY,
106                 [EXPR_WIDE_STRING_LITERAL]        = PREC_PRIMARY,
107                 [EXPR_COMPOUND_LITERAL]           = PREC_UNARY,
108                 [EXPR_CALL]                       = PREC_POSTFIX,
109                 [EXPR_CONDITIONAL]                = PREC_CONDITIONAL,
110                 [EXPR_SELECT]                     = PREC_POSTFIX,
111                 [EXPR_ARRAY_ACCESS]               = PREC_POSTFIX,
112                 [EXPR_SIZEOF]                     = PREC_UNARY,
113                 [EXPR_CLASSIFY_TYPE]              = PREC_UNARY,
114                 [EXPR_ALIGNOF]                    = PREC_UNARY,
115
116                 [EXPR_FUNCNAME]                   = PREC_PRIMARY,
117                 [EXPR_BUILTIN_CONSTANT_P]         = PREC_PRIMARY,
118                 [EXPR_BUILTIN_TYPES_COMPATIBLE_P] = PREC_PRIMARY,
119                 [EXPR_OFFSETOF]                   = PREC_PRIMARY,
120                 [EXPR_VA_START]                   = PREC_PRIMARY,
121                 [EXPR_VA_ARG]                     = PREC_PRIMARY,
122                 [EXPR_VA_COPY]                    = PREC_PRIMARY,
123                 [EXPR_STATEMENT]                  = PREC_PRIMARY,
124                 [EXPR_LABEL_ADDRESS]              = PREC_PRIMARY,
125
126                 [EXPR_UNARY_NEGATE]               = PREC_UNARY,
127                 [EXPR_UNARY_PLUS]                 = PREC_UNARY,
128                 [EXPR_UNARY_BITWISE_NEGATE]       = PREC_UNARY,
129                 [EXPR_UNARY_NOT]                  = PREC_UNARY,
130                 [EXPR_UNARY_DEREFERENCE]          = PREC_UNARY,
131                 [EXPR_UNARY_TAKE_ADDRESS]         = PREC_UNARY,
132                 [EXPR_UNARY_POSTFIX_INCREMENT]    = PREC_POSTFIX,
133                 [EXPR_UNARY_POSTFIX_DECREMENT]    = PREC_POSTFIX,
134                 [EXPR_UNARY_PREFIX_INCREMENT]     = PREC_UNARY,
135                 [EXPR_UNARY_PREFIX_DECREMENT]     = PREC_UNARY,
136                 [EXPR_UNARY_CAST]                 = PREC_UNARY,
137                 [EXPR_UNARY_CAST_IMPLICIT]        = PREC_UNARY,
138                 [EXPR_UNARY_ASSUME]               = PREC_PRIMARY,
139                 [EXPR_UNARY_DELETE]               = PREC_UNARY,
140                 [EXPR_UNARY_DELETE_ARRAY]         = PREC_UNARY,
141                 [EXPR_UNARY_THROW]                = PREC_ASSIGNMENT,
142
143                 [EXPR_BINARY_ADD]                 = PREC_ADDITIVE,
144                 [EXPR_BINARY_SUB]                 = PREC_ADDITIVE,
145                 [EXPR_BINARY_MUL]                 = PREC_MULTIPLICATIVE,
146                 [EXPR_BINARY_DIV]                 = PREC_MULTIPLICATIVE,
147                 [EXPR_BINARY_MOD]                 = PREC_MULTIPLICATIVE,
148                 [EXPR_BINARY_EQUAL]               = PREC_EQUALITY,
149                 [EXPR_BINARY_NOTEQUAL]            = PREC_EQUALITY,
150                 [EXPR_BINARY_LESS]                = PREC_RELATIONAL,
151                 [EXPR_BINARY_LESSEQUAL]           = PREC_RELATIONAL,
152                 [EXPR_BINARY_GREATER]             = PREC_RELATIONAL,
153                 [EXPR_BINARY_GREATEREQUAL]        = PREC_RELATIONAL,
154                 [EXPR_BINARY_BITWISE_AND]         = PREC_AND,
155                 [EXPR_BINARY_BITWISE_OR]          = PREC_OR,
156                 [EXPR_BINARY_BITWISE_XOR]         = PREC_XOR,
157                 [EXPR_BINARY_LOGICAL_AND]         = PREC_LOGICAL_AND,
158                 [EXPR_BINARY_LOGICAL_OR]          = PREC_LOGICAL_OR,
159                 [EXPR_BINARY_SHIFTLEFT]           = PREC_SHIFT,
160                 [EXPR_BINARY_SHIFTRIGHT]          = PREC_SHIFT,
161                 [EXPR_BINARY_ASSIGN]              = PREC_ASSIGNMENT,
162                 [EXPR_BINARY_MUL_ASSIGN]          = PREC_ASSIGNMENT,
163                 [EXPR_BINARY_DIV_ASSIGN]          = PREC_ASSIGNMENT,
164                 [EXPR_BINARY_MOD_ASSIGN]          = PREC_ASSIGNMENT,
165                 [EXPR_BINARY_ADD_ASSIGN]          = PREC_ASSIGNMENT,
166                 [EXPR_BINARY_SUB_ASSIGN]          = PREC_ASSIGNMENT,
167                 [EXPR_BINARY_SHIFTLEFT_ASSIGN]    = PREC_ASSIGNMENT,
168                 [EXPR_BINARY_SHIFTRIGHT_ASSIGN]   = PREC_ASSIGNMENT,
169                 [EXPR_BINARY_BITWISE_AND_ASSIGN]  = PREC_ASSIGNMENT,
170                 [EXPR_BINARY_BITWISE_XOR_ASSIGN]  = PREC_ASSIGNMENT,
171                 [EXPR_BINARY_BITWISE_OR_ASSIGN]   = PREC_ASSIGNMENT,
172                 [EXPR_BINARY_COMMA]               = PREC_EXPRESSION,
173
174                 [EXPR_BINARY_ISGREATER]           = PREC_PRIMARY,
175                 [EXPR_BINARY_ISGREATEREQUAL]      = PREC_PRIMARY,
176                 [EXPR_BINARY_ISLESS]              = PREC_PRIMARY,
177                 [EXPR_BINARY_ISLESSEQUAL]         = PREC_PRIMARY,
178                 [EXPR_BINARY_ISLESSGREATER]       = PREC_PRIMARY,
179                 [EXPR_BINARY_ISUNORDERED]         = PREC_PRIMARY
180         };
181         assert((size_t)kind < lengthof(prec));
182         unsigned res = prec[kind];
183
184         assert(res != PREC_BOTTOM);
185         return res;
186 }
187
188 /**
189  * Print a constant expression.
190  *
191  * @param cnst  the constant expression
192  */
193 static void print_const(const const_expression_t *cnst)
194 {
195         if (cnst->base.type == NULL)
196                 return;
197
198         const type_t *const type = skip_typeref(cnst->base.type);
199
200         if (is_type_atomic(type, ATOMIC_TYPE_BOOL)) {
201                 fputs(cnst->v.int_value ? "true" : "false", out);
202         } else if (is_type_integer(type)) {
203                 fprintf(out, "%lld", cnst->v.int_value);
204         } else if (is_type_float(type)) {
205                 long double const val = cnst->v.float_value;
206 #ifdef _WIN32
207                 /* ARG, no way to print long double */
208                 fprintf(out, "%.20g", (double)val);
209 #else
210                 fprintf(out, "%.20Lg", val);
211 #endif
212                 if (isfinite(val) && truncl(val) == val)
213                         fputs(".0", out);
214         } else {
215                 panic("unknown constant");
216         }
217
218         char const* suffix;
219         switch (type->atomic.akind) {
220                 case ATOMIC_TYPE_UINT:        suffix = "U";   break;
221                 case ATOMIC_TYPE_LONG:        suffix = "L";   break;
222                 case ATOMIC_TYPE_ULONG:       suffix = "UL";  break;
223                 case ATOMIC_TYPE_LONGLONG:    suffix = "LL";  break;
224                 case ATOMIC_TYPE_ULONGLONG:   suffix = "ULL"; break;
225                 case ATOMIC_TYPE_FLOAT:       suffix = "F";   break;
226                 case ATOMIC_TYPE_LONG_DOUBLE: suffix = "L";   break;
227
228                 default: return;
229         }
230         fputs(suffix, out);
231 }
232
233 /**
234  * Print a quoted string constant.
235  *
236  * @param string  the string constant
237  * @param border  the border char
238  * @param skip    number of chars to skip at the end
239  */
240 static void print_quoted_string(const string_t *const string, char border, int skip)
241 {
242         fputc(border, out);
243         const char *end = string->begin + string->size - skip;
244         for (const char *c = string->begin; c != end; ++c) {
245                 unsigned char const tc = *c;
246                 if (tc == border) {
247                         fputc('\\', out);
248                 }
249                 switch (tc) {
250                 case '\\':  fputs("\\\\", out); break;
251                 case '\a':  fputs("\\a", out); break;
252                 case '\b':  fputs("\\b", out); break;
253                 case '\f':  fputs("\\f", out); break;
254                 case '\n':  fputs("\\n", out); break;
255                 case '\r':  fputs("\\r", out); break;
256                 case '\t':  fputs("\\t", out); break;
257                 case '\v':  fputs("\\v", out); break;
258                 case '\?':  fputs("\\?", out); break;
259                 case 27:
260                         if (c_mode & _GNUC) {
261                                 fputs("\\e", out); break;
262                         }
263                         /* FALLTHROUGH */
264                 default:
265                         if (tc < 0x80 && !isprint(tc)) {
266                                 fprintf(out, "\\%03o", (unsigned)tc);
267                         } else {
268                                 fputc(tc, out);
269                         }
270                         break;
271                 }
272         }
273         fputc(border, out);
274 }
275
276 /**
277  * Prints a wide string literal expression.
278  *
279  * @param wstr    the wide string literal expression
280  * @param border  the border char
281  * @param skip    number of chars to skip at the end
282  */
283 static void print_quoted_wide_string(const wide_string_t *const wstr,
284                                      char border, int skip)
285 {
286         fputc('L', out);
287         fputc(border, out);
288         const wchar_rep_t *end = wstr->begin + wstr->size - skip;
289         for (const wchar_rep_t *c = wstr->begin; c != end; ++c) {
290                 switch (*c) {
291                         case L'\"':  fputs("\\\"", out); break;
292                         case L'\\':  fputs("\\\\", out); break;
293                         case L'\a':  fputs("\\a",  out); break;
294                         case L'\b':  fputs("\\b",  out); break;
295                         case L'\f':  fputs("\\f",  out); break;
296                         case L'\n':  fputs("\\n",  out); break;
297                         case L'\r':  fputs("\\r",  out); break;
298                         case L'\t':  fputs("\\t",  out); break;
299                         case L'\v':  fputs("\\v",  out); break;
300                         case L'\?':  fputs("\\?",  out); break;
301                         case 27:
302                                 if (c_mode & _GNUC) {
303                                         fputs("\\e", out); break;
304                                 }
305                                 /* FALLTHROUGH */
306                         default: {
307                                 const unsigned tc = *c;
308                                 if (tc < 0x80U) {
309                                         if (isprint(*c)) {
310                                                 fputc(*c, out);
311                                         } else {
312                                                 fprintf(out, "\\%03o", tc);
313                                         }
314                                 } else if (tc < 0x800) {
315                                         fputc(0xC0 | (tc >> 6),   out);
316                                         fputc(0x80 | (tc & 0x3F), out);
317                                 } else if (tc < 0x10000) {
318                                         fputc(0xE0 | ( tc >> 12),         out);
319                                         fputc(0x80 | ((tc >>  6) & 0x3F), out);
320                                         fputc(0x80 | ( tc        & 0x3F), out);
321                                 } else {
322                                         fputc(0xF0 | ( tc >> 18),         out);
323                                         fputc(0x80 | ((tc >> 12) & 0x3F), out);
324                                         fputc(0x80 | ((tc >>  6) & 0x3F), out);
325                                         fputc(0x80 | ( tc        & 0x3F), out);
326                                 }
327                         }
328                 }
329         }
330         fputc(border, out);
331 }
332
333 /**
334  * Print a constant character expression.
335  *
336  * @param cnst  the constant character expression
337  */
338 static void print_character_constant(const const_expression_t *cnst)
339 {
340         print_quoted_string(&cnst->v.character, '\'', 0);
341 }
342
343 static void print_wide_character_constant(const const_expression_t *cnst)
344 {
345         print_quoted_wide_string(&cnst->v.wide_character, '\'', 0);
346 }
347
348 /**
349  * Prints a string literal expression.
350  *
351  * @param string_literal  the string literal expression
352  */
353 static void print_string_literal(
354                 const string_literal_expression_t *string_literal)
355 {
356         print_quoted_string(&string_literal->value, '"', 1);
357 }
358
359 /**
360  * Prints a predefined symbol.
361  */
362 static void print_funcname(const funcname_expression_t *funcname)
363 {
364         const char *s = "";
365         switch (funcname->kind) {
366         case FUNCNAME_FUNCTION:        s = (c_mode & _C99) ? "__func__" : "__FUNCTION__"; break;
367         case FUNCNAME_PRETTY_FUNCTION: s = "__PRETTY_FUNCTION__"; break;
368         case FUNCNAME_FUNCSIG:         s = "__FUNCSIG__"; break;
369         case FUNCNAME_FUNCDNAME:       s = "__FUNCDNAME__"; break;
370         }
371         fputs(s, out);
372 }
373
374 static void print_wide_string_literal(
375         const wide_string_literal_expression_t *const wstr)
376 {
377         print_quoted_wide_string(&wstr->value, '"', 1);
378 }
379
380 static void print_compound_literal(
381                 const compound_literal_expression_t *expression)
382 {
383         fputc('(', out);
384         print_type(expression->type);
385         fputc(')', out);
386         print_initializer(expression->initializer);
387 }
388
389 static void print_assignment_expression(const expression_t *const expr)
390 {
391         print_expression_prec(expr, PREC_ASSIGNMENT);
392 }
393
394 /**
395  * Prints a call expression.
396  *
397  * @param call  the call expression
398  */
399 static void print_call_expression(const call_expression_t *call)
400 {
401         print_expression_prec(call->function, PREC_POSTFIX);
402         fputc('(', out);
403         call_argument_t *argument = call->arguments;
404         int              first    = 1;
405         while (argument != NULL) {
406                 if (!first) {
407                         fputs(", ", out);
408                 } else {
409                         first = 0;
410                 }
411                 print_assignment_expression(argument->expression);
412
413                 argument = argument->next;
414         }
415         fputc(')', out);
416 }
417
418 /**
419  * Prints a binary expression.
420  *
421  * @param binexpr   the binary expression
422  */
423 static void print_binary_expression(const binary_expression_t *binexpr)
424 {
425         unsigned prec = get_expression_precedence(binexpr->base.kind);
426         int      r2l  = right_to_left(prec);
427
428         print_expression_prec(binexpr->left, prec + r2l);
429         char const* op;
430         switch (binexpr->base.kind) {
431         case EXPR_BINARY_COMMA:              op = ", ";    break;
432         case EXPR_BINARY_ASSIGN:             op = " = ";   break;
433         case EXPR_BINARY_ADD:                op = " + ";   break;
434         case EXPR_BINARY_SUB:                op = " - ";   break;
435         case EXPR_BINARY_MUL:                op = " * ";   break;
436         case EXPR_BINARY_MOD:                op = " % ";   break;
437         case EXPR_BINARY_DIV:                op = " / ";   break;
438         case EXPR_BINARY_BITWISE_OR:         op = " | ";   break;
439         case EXPR_BINARY_BITWISE_AND:        op = " & ";   break;
440         case EXPR_BINARY_BITWISE_XOR:        op = " ^ ";   break;
441         case EXPR_BINARY_LOGICAL_OR:         op = " || ";  break;
442         case EXPR_BINARY_LOGICAL_AND:        op = " && ";  break;
443         case EXPR_BINARY_NOTEQUAL:           op = " != ";  break;
444         case EXPR_BINARY_EQUAL:              op = " == ";  break;
445         case EXPR_BINARY_LESS:               op = " < ";   break;
446         case EXPR_BINARY_LESSEQUAL:          op = " <= ";  break;
447         case EXPR_BINARY_GREATER:            op = " > ";   break;
448         case EXPR_BINARY_GREATEREQUAL:       op = " >= ";  break;
449         case EXPR_BINARY_SHIFTLEFT:          op = " << ";  break;
450         case EXPR_BINARY_SHIFTRIGHT:         op = " >> ";  break;
451
452         case EXPR_BINARY_ADD_ASSIGN:         op = " += ";  break;
453         case EXPR_BINARY_SUB_ASSIGN:         op = " -= ";  break;
454         case EXPR_BINARY_MUL_ASSIGN:         op = " *= ";  break;
455         case EXPR_BINARY_MOD_ASSIGN:         op = " %= ";  break;
456         case EXPR_BINARY_DIV_ASSIGN:         op = " /= ";  break;
457         case EXPR_BINARY_BITWISE_OR_ASSIGN:  op = " |= ";  break;
458         case EXPR_BINARY_BITWISE_AND_ASSIGN: op = " &= ";  break;
459         case EXPR_BINARY_BITWISE_XOR_ASSIGN: op = " ^= ";  break;
460         case EXPR_BINARY_SHIFTLEFT_ASSIGN:   op = " <<= "; break;
461         case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  op = " >>= "; break;
462         default: panic("invalid binexpression found");
463         }
464         fputs(op, out);
465         print_expression_prec(binexpr->right, prec + 1 - r2l);
466 }
467
468 /**
469  * Prints an unary expression.
470  *
471  * @param unexpr   the unary expression
472  */
473 static void print_unary_expression(const unary_expression_t *unexpr)
474 {
475         unsigned prec = get_expression_precedence(unexpr->base.kind);
476         switch (unexpr->base.kind) {
477         case EXPR_UNARY_NEGATE:           fputc('-',          out); break;
478         case EXPR_UNARY_PLUS:             fputc('+',          out); break;
479         case EXPR_UNARY_NOT:              fputc('!',          out); break;
480         case EXPR_UNARY_BITWISE_NEGATE:   fputc('~',          out); break;
481         case EXPR_UNARY_PREFIX_INCREMENT: fputs("++",         out); break;
482         case EXPR_UNARY_PREFIX_DECREMENT: fputs("--",         out); break;
483         case EXPR_UNARY_DEREFERENCE:      fputc('*',          out); break;
484         case EXPR_UNARY_TAKE_ADDRESS:     fputc('&',          out); break;
485         case EXPR_UNARY_DELETE:           fputs("delete ",    out); break;
486         case EXPR_UNARY_DELETE_ARRAY:     fputs("delete [] ", out); break;
487
488         case EXPR_UNARY_POSTFIX_INCREMENT:
489                 print_expression_prec(unexpr->value, prec);
490                 fputs("++", out);
491                 return;
492         case EXPR_UNARY_POSTFIX_DECREMENT:
493                 print_expression_prec(unexpr->value, prec);
494                 fputs("--", out);
495                 return;
496         case EXPR_UNARY_CAST_IMPLICIT:
497         case EXPR_UNARY_CAST:
498                 fputc('(', out);
499                 print_type(unexpr->base.type);
500                 fputc(')', out);
501                 break;
502         case EXPR_UNARY_ASSUME:
503                 fputs("__assume(", out);
504                 print_assignment_expression(unexpr->value);
505                 fputc(')', out);
506                 return;
507
508         case EXPR_UNARY_THROW:
509                 if (unexpr->value == NULL) {
510                         fputs("throw", out);
511                         return;
512                 }
513                 fputs("throw ", out);
514                 break;
515
516         default:
517                 panic("invalid unary expression found");
518         }
519         print_expression_prec(unexpr->value, prec);
520 }
521
522 /**
523  * Prints a reference expression.
524  *
525  * @param ref   the reference expression
526  */
527 static void print_reference_expression(const reference_expression_t *ref)
528 {
529         fputs(ref->entity->base.symbol->string, out);
530 }
531
532 /**
533  * Prints a label address expression.
534  *
535  * @param ref   the reference expression
536  */
537 static void print_label_address_expression(const label_address_expression_t *le)
538 {
539         fprintf(out, "&&%s", le->label->base.symbol->string);
540 }
541
542 /**
543  * Prints an array expression.
544  *
545  * @param expression   the array expression
546  */
547 static void print_array_expression(const array_access_expression_t *expression)
548 {
549         if (!expression->flipped) {
550                 print_expression_prec(expression->array_ref, PREC_POSTFIX);
551                 fputc('[', out);
552                 print_expression(expression->index);
553                 fputc(']', out);
554         } else {
555                 print_expression_prec(expression->index, PREC_POSTFIX);
556                 fputc('[', out);
557                 print_expression(expression->array_ref);
558                 fputc(']', out);
559         }
560 }
561
562 /**
563  * Prints a typeproperty expression (sizeof or __alignof__).
564  *
565  * @param expression   the type property expression
566  */
567 static void print_typeprop_expression(const typeprop_expression_t *expression)
568 {
569         if (expression->base.kind == EXPR_SIZEOF) {
570                 fputs("sizeof", out);
571         } else {
572                 assert(expression->base.kind == EXPR_ALIGNOF);
573                 fputs("__alignof__", out);
574         }
575         if (expression->tp_expression != NULL) {
576                 /* PREC_TOP: always print the '()' here, sizeof x is right but unusual */
577                 print_expression_prec(expression->tp_expression, PREC_TOP);
578         } else {
579                 fputc('(', out);
580                 print_type(expression->type);
581                 fputc(')', out);
582         }
583 }
584
585 /**
586  * Prints a builtin constant expression.
587  *
588  * @param expression   the builtin constant expression
589  */
590 static void print_builtin_constant(const builtin_constant_expression_t *expression)
591 {
592         fputs("__builtin_constant_p(", out);
593         print_assignment_expression(expression->value);
594         fputc(')', out);
595 }
596
597 /**
598  * Prints a builtin types compatible expression.
599  *
600  * @param expression   the builtin types compatible expression
601  */
602 static void print_builtin_types_compatible(
603                 const builtin_types_compatible_expression_t *expression)
604 {
605         fputs("__builtin_types_compatible_p(", out);
606         print_type(expression->left);
607         fputs(", ", out);
608         print_type(expression->right);
609         fputc(')', out);
610 }
611
612 /**
613  * Prints a conditional expression.
614  *
615  * @param expression   the conditional expression
616  */
617 static void print_conditional(const conditional_expression_t *expression)
618 {
619         print_expression_prec(expression->condition, PREC_LOGICAL_OR);
620         if (expression->true_expression != NULL) {
621                 fputs(" ? ", out);
622                 print_expression_prec(expression->true_expression, PREC_EXPRESSION);
623                 fputs(" : ", out);
624         } else {
625                 fputs(" ?: ", out);
626         }
627         precedence_t prec = c_mode & _CXX ? PREC_ASSIGNMENT : PREC_CONDITIONAL;
628         print_expression_prec(expression->false_expression, prec);
629 }
630
631 /**
632  * Prints a va_start expression.
633  *
634  * @param expression   the va_start expression
635  */
636 static void print_va_start(const va_start_expression_t *const expression)
637 {
638         fputs("__builtin_va_start(", out);
639         print_assignment_expression(expression->ap);
640         fputs(", ", out);
641         fputs(expression->parameter->base.base.symbol->string, out);
642         fputc(')', out);
643 }
644
645 /**
646  * Prints a va_arg expression.
647  *
648  * @param expression   the va_arg expression
649  */
650 static void print_va_arg(const va_arg_expression_t *expression)
651 {
652         fputs("__builtin_va_arg(", out);
653         print_assignment_expression(expression->ap);
654         fputs(", ", out);
655         print_type(expression->base.type);
656         fputc(')', out);
657 }
658
659 /**
660  * Prints a va_copy expression.
661  *
662  * @param expression   the va_copy expression
663  */
664 static void print_va_copy(const va_copy_expression_t *expression)
665 {
666         fputs("__builtin_va_copy(", out);
667         print_assignment_expression(expression->dst);
668         fputs(", ", out);
669         print_assignment_expression(expression->src);
670         fputc(')', out);
671 }
672
673 /**
674  * Prints a select expression (. or ->).
675  *
676  * @param expression   the select expression
677  */
678 static void print_select(const select_expression_t *expression)
679 {
680         print_expression_prec(expression->compound, PREC_POSTFIX);
681         if (is_type_pointer(skip_typeref(expression->compound->base.type))) {
682                 fputs("->", out);
683         } else {
684                 fputc('.', out);
685         }
686         fputs(expression->compound_entry->base.symbol->string, out);
687 }
688
689 /**
690  * Prints a type classify expression.
691  *
692  * @param expr   the type classify expression
693  */
694 static void print_classify_type_expression(
695         const classify_type_expression_t *const expr)
696 {
697         fputs("__builtin_classify_type(", out);
698         print_assignment_expression(expr->type_expression);
699         fputc(')', out);
700 }
701
702 /**
703  * Prints a designator.
704  *
705  * @param designator  the designator
706  */
707 static void print_designator(const designator_t *designator)
708 {
709         for ( ; designator != NULL; designator = designator->next) {
710                 if (designator->symbol == NULL) {
711                         fputc('[', out);
712                         print_expression(designator->array_index);
713                         fputc(']', out);
714                 } else {
715                         fputc('.', out);
716                         fputs(designator->symbol->string, out);
717                 }
718         }
719 }
720
721 /**
722  * Prints an offsetof expression.
723  *
724  * @param expression   the offset expression
725  */
726 static void print_offsetof_expression(const offsetof_expression_t *expression)
727 {
728         fputs("__builtin_offsetof(", out);
729         print_type(expression->type);
730         fputc(',', out);
731         print_designator(expression->designator);
732         fputc(')', out);
733 }
734
735 /**
736  * Prints a statement expression.
737  *
738  * @param expression   the statement expression
739  */
740 static void print_statement_expression(const statement_expression_t *expression)
741 {
742         fputc('(', out);
743         print_statement(expression->statement);
744         fputc(')', out);
745 }
746
747 /**
748  * Prints an expression with parenthesis if needed.
749  *
750  * @param expression  the expression to print
751  * @param top_prec    the precedence of the user of this expression.
752  */
753 static void print_expression_prec(const expression_t *expression, unsigned top_prec)
754 {
755         if (expression->kind == EXPR_UNARY_CAST_IMPLICIT && !print_implicit_casts) {
756                 expression = expression->unary.value;
757         }
758
759         bool parenthesized =
760                 expression->base.parenthesized                 ||
761                 (print_parenthesis && top_prec != PREC_BOTTOM) ||
762                 top_prec > get_expression_precedence(expression->base.kind);
763
764         if (parenthesized)
765                 fputc('(', out);
766         switch (expression->kind) {
767         case EXPR_UNKNOWN:
768         case EXPR_INVALID:
769                 fputs("$invalid expression$", out);
770                 break;
771         case EXPR_CHARACTER_CONSTANT:
772                 print_character_constant(&expression->conste);
773                 break;
774         case EXPR_WIDE_CHARACTER_CONSTANT:
775                 print_wide_character_constant(&expression->conste);
776                 break;
777         case EXPR_CONST:
778                 print_const(&expression->conste);
779                 break;
780         case EXPR_FUNCNAME:
781                 print_funcname(&expression->funcname);
782                 break;
783         case EXPR_STRING_LITERAL:
784                 print_string_literal(&expression->string);
785                 break;
786         case EXPR_WIDE_STRING_LITERAL:
787                 print_wide_string_literal(&expression->wide_string);
788                 break;
789         case EXPR_COMPOUND_LITERAL:
790                 print_compound_literal(&expression->compound_literal);
791                 break;
792         case EXPR_CALL:
793                 print_call_expression(&expression->call);
794                 break;
795         EXPR_BINARY_CASES
796                 print_binary_expression(&expression->binary);
797                 break;
798         case EXPR_REFERENCE:
799         case EXPR_REFERENCE_ENUM_VALUE:
800                 print_reference_expression(&expression->reference);
801                 break;
802         case EXPR_ARRAY_ACCESS:
803                 print_array_expression(&expression->array_access);
804                 break;
805         case EXPR_LABEL_ADDRESS:
806                 print_label_address_expression(&expression->label_address);
807                 break;
808         EXPR_UNARY_CASES
809                 print_unary_expression(&expression->unary);
810                 break;
811         case EXPR_SIZEOF:
812         case EXPR_ALIGNOF:
813                 print_typeprop_expression(&expression->typeprop);
814                 break;
815         case EXPR_BUILTIN_CONSTANT_P:
816                 print_builtin_constant(&expression->builtin_constant);
817                 break;
818         case EXPR_BUILTIN_TYPES_COMPATIBLE_P:
819                 print_builtin_types_compatible(&expression->builtin_types_compatible);
820                 break;
821         case EXPR_CONDITIONAL:
822                 print_conditional(&expression->conditional);
823                 break;
824         case EXPR_VA_START:
825                 print_va_start(&expression->va_starte);
826                 break;
827         case EXPR_VA_ARG:
828                 print_va_arg(&expression->va_arge);
829                 break;
830         case EXPR_VA_COPY:
831                 print_va_copy(&expression->va_copye);
832                 break;
833         case EXPR_SELECT:
834                 print_select(&expression->select);
835                 break;
836         case EXPR_CLASSIFY_TYPE:
837                 print_classify_type_expression(&expression->classify_type);
838                 break;
839         case EXPR_OFFSETOF:
840                 print_offsetof_expression(&expression->offsetofe);
841                 break;
842         case EXPR_STATEMENT:
843                 print_statement_expression(&expression->statement);
844                 break;
845
846         default:
847                 /* TODO */
848                 fprintf(out, "some expression of type %d", (int)expression->kind);
849                 break;
850         }
851         if (parenthesized)
852                 fputc(')', out);
853 }
854
855 /**
856  * Print an compound statement.
857  *
858  * @param block  the compound statement
859  */
860 static void print_compound_statement(const compound_statement_t *block)
861 {
862         fputs("{\n", out);
863         ++indent;
864
865         statement_t *statement = block->statements;
866         while (statement != NULL) {
867                 if (statement->base.kind == STATEMENT_CASE_LABEL)
868                         --indent;
869                 if (statement->kind != STATEMENT_LABEL)
870                         print_indent();
871                 print_statement(statement);
872
873                 statement = statement->base.next;
874         }
875         --indent;
876         print_indent();
877         fputs(block->stmt_expr ? "}" : "}\n", out);
878 }
879
880 /**
881  * Print a return statement.
882  *
883  * @param statement  the return statement
884  */
885 static void print_return_statement(const return_statement_t *statement)
886 {
887         expression_t const *const val = statement->value;
888         if (val != NULL) {
889                 fputs("return ", out);
890                 print_expression(val);
891                 fputs(";\n", out);
892         } else {
893                 fputs("return;\n", out);
894         }
895 }
896
897 /**
898  * Print an expression statement.
899  *
900  * @param statement  the expression statement
901  */
902 static void print_expression_statement(const expression_statement_t *statement)
903 {
904         print_expression(statement->expression);
905         fputs(";\n", out);
906 }
907
908 /**
909  * Print a goto statement.
910  *
911  * @param statement  the goto statement
912  */
913 static void print_goto_statement(const goto_statement_t *statement)
914 {
915         fputs("goto ", out);
916         if (statement->expression != NULL) {
917                 fputc('*', out);
918                 print_expression(statement->expression);
919         } else {
920                 fputs(statement->label->base.symbol->string, out);
921         }
922         fputs(";\n", out);
923 }
924
925 /**
926  * Print a label statement.
927  *
928  * @param statement  the label statement
929  */
930 static void print_label_statement(const label_statement_t *statement)
931 {
932         fprintf(out, "%s:\n", statement->label->base.symbol->string);
933         print_indent();
934         print_statement(statement->statement);
935 }
936
937 /**
938  * Print an if statement.
939  *
940  * @param statement  the if statement
941  */
942 static void print_if_statement(const if_statement_t *statement)
943 {
944         fputs("if (", out);
945         print_expression(statement->condition);
946         fputs(") ", out);
947         print_statement(statement->true_statement);
948
949         if (statement->false_statement != NULL) {
950                 print_indent();
951                 fputs("else ", out);
952                 print_statement(statement->false_statement);
953         }
954 }
955
956 /**
957  * Print a switch statement.
958  *
959  * @param statement  the switch statement
960  */
961 static void print_switch_statement(const switch_statement_t *statement)
962 {
963         fputs("switch (", out);
964         print_expression(statement->expression);
965         fputs(") ", out);
966         print_statement(statement->body);
967 }
968
969 /**
970  * Print a case label (including the default label).
971  *
972  * @param statement  the case label statement
973  */
974 static void print_case_label(const case_label_statement_t *statement)
975 {
976         if (statement->expression == NULL) {
977                 fputs("default:\n", out);
978         } else {
979                 fputs("case ", out);
980                 print_expression(statement->expression);
981                 if (statement->end_range != NULL) {
982                         fputs(" ... ", out);
983                         print_expression(statement->end_range);
984                 }
985                 fputs(":\n", out);
986         }
987         ++indent;
988         if (statement->statement != NULL) {
989                 if (statement->statement->base.kind == STATEMENT_CASE_LABEL) {
990                         --indent;
991                 }
992                 print_indent();
993                 print_statement(statement->statement);
994         }
995 }
996
997 static void print_typedef(const entity_t *entity)
998 {
999         fputs("typedef ", out);
1000         print_type_ext(entity->typedefe.type, entity->base.symbol, NULL);
1001         fputc(';', out);
1002 }
1003
1004 /**
1005  * returns true if the entity is a compiler generated one and has no real
1006  * correspondenc in the source file
1007  */
1008 static bool is_generated_entity(const entity_t *entity)
1009 {
1010         if (entity->kind == ENTITY_TYPEDEF)
1011                 return entity->typedefe.builtin;
1012
1013         if (is_declaration(entity))
1014                 return entity->declaration.implicit;
1015
1016         return false;
1017 }
1018
1019 /**
1020  * Print a declaration statement.
1021  *
1022  * @param statement   the statement
1023  */
1024 static void print_declaration_statement(
1025                 const declaration_statement_t *statement)
1026 {
1027         bool first = true;
1028         entity_t *entity = statement->declarations_begin;
1029         if (entity == NULL) {
1030                 fputs("/* empty declaration statement */\n", out);
1031                 return;
1032         }
1033
1034         entity_t *const end = statement->declarations_end->base.next;
1035         for (; entity != end; entity = entity->base.next) {
1036                 if (entity->kind == ENTITY_ENUM_VALUE)
1037                         continue;
1038                 if (is_generated_entity(entity))
1039                         continue;
1040
1041                 if (!first) {
1042                         print_indent();
1043                 } else {
1044                         first = false;
1045                 }
1046
1047                 print_entity(entity);
1048                 fputc('\n', out);
1049         }
1050 }
1051
1052 /**
1053  * Print a while statement.
1054  *
1055  * @param statement   the statement
1056  */
1057 static void print_while_statement(const while_statement_t *statement)
1058 {
1059         fputs("while (", out);
1060         print_expression(statement->condition);
1061         fputs(") ", out);
1062         print_statement(statement->body);
1063 }
1064
1065 /**
1066  * Print a do-while statement.
1067  *
1068  * @param statement   the statement
1069  */
1070 static void print_do_while_statement(const do_while_statement_t *statement)
1071 {
1072         fputs("do ", out);
1073         print_statement(statement->body);
1074         print_indent();
1075         fputs("while (", out);
1076         print_expression(statement->condition);
1077         fputs(");\n", out);
1078 }
1079
1080 /**
1081  * Print a for statement.
1082  *
1083  * @param statement   the statement
1084  */
1085 static void print_for_statement(const for_statement_t *statement)
1086 {
1087         fputs("for (", out);
1088         if (statement->initialisation != NULL) {
1089                 print_expression(statement->initialisation);
1090                 fputc(';', out);
1091         } else {
1092                 entity_t const *entity = statement->scope.entities;
1093                 for (; entity != NULL; entity = entity->base.next) {
1094                         if (is_generated_entity(entity))
1095                                 continue;
1096                         /* FIXME display of multiple declarations is wrong */
1097                         print_declaration(entity);
1098                 }
1099         }
1100         if (statement->condition != NULL) {
1101                 fputc(' ', out);
1102                 print_expression(statement->condition);
1103         }
1104         fputc(';', out);
1105         if (statement->step != NULL) {
1106                 fputc(' ', out);
1107                 print_expression(statement->step);
1108         }
1109         fputs(") ", out);
1110         print_statement(statement->body);
1111 }
1112
1113 /**
1114  * Print assembler arguments.
1115  *
1116  * @param arguments   the arguments
1117  */
1118 static void print_asm_arguments(asm_argument_t *arguments)
1119 {
1120         asm_argument_t *argument = arguments;
1121         for (; argument != NULL; argument = argument->next) {
1122                 if (argument != arguments)
1123                         fputs(", ", out);
1124
1125                 if (argument->symbol) {
1126                         fprintf(out, "[%s] ", argument->symbol->string);
1127                 }
1128                 print_quoted_string(&argument->constraints, '"', 1);
1129                 fputs(" (", out);
1130                 print_expression(argument->expression);
1131                 fputc(')', out);
1132         }
1133 }
1134
1135 /**
1136  * Print assembler clobbers.
1137  *
1138  * @param clobbers   the clobbers
1139  */
1140 static void print_asm_clobbers(asm_clobber_t *clobbers)
1141 {
1142         asm_clobber_t *clobber = clobbers;
1143         for (; clobber != NULL; clobber = clobber->next) {
1144                 if (clobber != clobbers)
1145                         fputs(", ", out);
1146
1147                 print_quoted_string(&clobber->clobber, '"', 1);
1148         }
1149 }
1150
1151 /**
1152  * Print an assembler statement.
1153  *
1154  * @param statement   the statement
1155  */
1156 static void print_asm_statement(const asm_statement_t *statement)
1157 {
1158         fputs("asm ", out);
1159         if (statement->is_volatile) {
1160                 fputs("volatile ", out);
1161         }
1162         fputc('(', out);
1163         print_quoted_string(&statement->asm_text, '"', 1);
1164         if (statement->outputs  == NULL &&
1165             statement->inputs   == NULL &&
1166             statement->clobbers == NULL)
1167                 goto end_of_print_asm_statement;
1168
1169         fputs(" : ", out);
1170         print_asm_arguments(statement->outputs);
1171         if (statement->inputs == NULL && statement->clobbers == NULL)
1172                 goto end_of_print_asm_statement;
1173
1174         fputs(" : ", out);
1175         print_asm_arguments(statement->inputs);
1176         if (statement->clobbers == NULL)
1177                 goto end_of_print_asm_statement;
1178
1179         fputs(" : ", out);
1180         print_asm_clobbers(statement->clobbers);
1181
1182 end_of_print_asm_statement:
1183         fputs(");\n", out);
1184 }
1185
1186 /**
1187  * Print a microsoft __try statement.
1188  *
1189  * @param statement   the statement
1190  */
1191 static void print_ms_try_statement(const ms_try_statement_t *statement)
1192 {
1193         fputs("__try ", out);
1194         print_statement(statement->try_statement);
1195         print_indent();
1196         if (statement->except_expression != NULL) {
1197                 fputs("__except(", out);
1198                 print_expression(statement->except_expression);
1199                 fputs(") ", out);
1200         } else {
1201                 fputs("__finally ", out);
1202         }
1203         print_statement(statement->final_statement);
1204 }
1205
1206 /**
1207  * Print a microsoft __leave statement.
1208  *
1209  * @param statement   the statement
1210  */
1211 static void print_leave_statement(const leave_statement_t *statement)
1212 {
1213         (void)statement;
1214         fputs("__leave;\n", out);
1215 }
1216
1217 /**
1218  * Print a statement.
1219  *
1220  * @param statement   the statement
1221  */
1222 void print_statement(const statement_t *statement)
1223 {
1224         switch (statement->kind) {
1225         case STATEMENT_EMPTY:
1226                 fputs(";\n", out);
1227                 break;
1228         case STATEMENT_COMPOUND:
1229                 print_compound_statement(&statement->compound);
1230                 break;
1231         case STATEMENT_RETURN:
1232                 print_return_statement(&statement->returns);
1233                 break;
1234         case STATEMENT_EXPRESSION:
1235                 print_expression_statement(&statement->expression);
1236                 break;
1237         case STATEMENT_LABEL:
1238                 print_label_statement(&statement->label);
1239                 break;
1240         case STATEMENT_GOTO:
1241                 print_goto_statement(&statement->gotos);
1242                 break;
1243         case STATEMENT_CONTINUE:
1244                 fputs("continue;\n", out);
1245                 break;
1246         case STATEMENT_BREAK:
1247                 fputs("break;\n", out);
1248                 break;
1249         case STATEMENT_IF:
1250                 print_if_statement(&statement->ifs);
1251                 break;
1252         case STATEMENT_SWITCH:
1253                 print_switch_statement(&statement->switchs);
1254                 break;
1255         case STATEMENT_CASE_LABEL:
1256                 print_case_label(&statement->case_label);
1257                 break;
1258         case STATEMENT_DECLARATION:
1259                 print_declaration_statement(&statement->declaration);
1260                 break;
1261         case STATEMENT_WHILE:
1262                 print_while_statement(&statement->whiles);
1263                 break;
1264         case STATEMENT_DO_WHILE:
1265                 print_do_while_statement(&statement->do_while);
1266                 break;
1267         case STATEMENT_FOR:
1268                 print_for_statement(&statement->fors);
1269                 break;
1270         case STATEMENT_ASM:
1271                 print_asm_statement(&statement->asms);
1272                 break;
1273         case STATEMENT_MS_TRY:
1274                 print_ms_try_statement(&statement->ms_try);
1275                 break;
1276         case STATEMENT_LEAVE:
1277                 print_leave_statement(&statement->leave);
1278                 break;
1279         case STATEMENT_INVALID:
1280                 fputs("$invalid statement$\n", out);
1281                 break;
1282         }
1283 }
1284
1285 /**
1286  * Print a storage class.
1287  *
1288  * @param storage_class   the storage class
1289  */
1290 static void print_storage_class(storage_class_tag_t storage_class)
1291 {
1292         switch (storage_class) {
1293         case STORAGE_CLASS_NONE:     return;
1294         case STORAGE_CLASS_TYPEDEF:  fputs("typedef ",  out); return;
1295         case STORAGE_CLASS_EXTERN:   fputs("extern ",   out); return;
1296         case STORAGE_CLASS_STATIC:   fputs("static ",   out); return;
1297         case STORAGE_CLASS_AUTO:     fputs("auto ",     out); return;
1298         case STORAGE_CLASS_REGISTER: fputs("register ", out); return;
1299         }
1300         panic("invalid storage class");
1301 }
1302
1303 /**
1304  * Print an initializer.
1305  *
1306  * @param initializer  the initializer
1307  */
1308 void print_initializer(const initializer_t *initializer)
1309 {
1310         if (initializer == NULL) {
1311                 fputs("{}", out);
1312                 return;
1313         }
1314
1315         switch (initializer->kind) {
1316         case INITIALIZER_VALUE: {
1317                 const initializer_value_t *value = &initializer->value;
1318                 print_assignment_expression(value->value);
1319                 return;
1320         }
1321         case INITIALIZER_LIST: {
1322                 assert(initializer->kind == INITIALIZER_LIST);
1323                 fputs("{ ", out);
1324                 const initializer_list_t *list = &initializer->list;
1325
1326                 for (size_t i = 0 ; i < list->len; ++i) {
1327                         const initializer_t *sub_init = list->initializers[i];
1328                         print_initializer(list->initializers[i]);
1329                         if (i < list->len-1) {
1330                                 if (sub_init == NULL || sub_init->kind != INITIALIZER_DESIGNATOR)
1331                                         fputs(", ", out);
1332                         }
1333                 }
1334                 fputs(" }", out);
1335                 return;
1336         }
1337         case INITIALIZER_STRING:
1338                 print_quoted_string(&initializer->string.string, '"', 1);
1339                 return;
1340         case INITIALIZER_WIDE_STRING:
1341                 print_quoted_wide_string(&initializer->wide_string.string, '"', 1);
1342                 return;
1343         case INITIALIZER_DESIGNATOR:
1344                 print_designator(initializer->designator.designator);
1345                 fputs(" = ", out);
1346                 return;
1347         }
1348
1349         panic("invalid initializer kind found");
1350 }
1351
1352 #if 0
1353 /**
1354  * Print microsoft extended declaration modifiers.
1355  */
1356 static void print_ms_modifiers(const declaration_t *declaration)
1357 {
1358         if ((c_mode & _MS) == 0)
1359                 return;
1360
1361         decl_modifiers_t modifiers = declaration->modifiers;
1362
1363         bool        ds_shown = false;
1364         const char *next     = "(";
1365
1366         if (declaration->base.kind == ENTITY_VARIABLE) {
1367                 variable_t *variable = (variable_t*)declaration;
1368                 if (variable->alignment != 0
1369                                 || variable->get_property_sym != NULL
1370                                 || variable->put_property_sym != NULL) {
1371                         if (!ds_shown) {
1372                                 fputs("__declspec", out);
1373                                 ds_shown = true;
1374                         }
1375
1376                         if (variable->alignment != 0) {
1377                                 fputs(next, out); next = ", "; fprintf(out, "align(%u)", variable->alignment);
1378                         }
1379                         if (variable->get_property_sym != NULL
1380                                         || variable->put_property_sym != NULL) {
1381                                 char *comma = "";
1382                                 fputs(next, out); next = ", "; fputs("property(", out);
1383                                 if (variable->get_property_sym != NULL) {
1384                                         fprintf(out, "get=%s", variable->get_property_sym->string);
1385                                         comma = ", ";
1386                                 }
1387                                 if (variable->put_property_sym != NULL)
1388                                         fprintf(out, "%sput=%s", comma, variable->put_property_sym->string);
1389                                 fputc(')', out);
1390                         }
1391                 }
1392         }
1393
1394         /* DM_FORCEINLINE handled outside. */
1395         if ((modifiers & ~DM_FORCEINLINE) != 0) {
1396                 if (!ds_shown) {
1397                         fputs("__declspec", out);
1398                         ds_shown = true;
1399                 }
1400                 if (modifiers & DM_DLLIMPORT) {
1401                         fputs(next, out); next = ", "; fputs("dllimport", out);
1402                 }
1403                 if (modifiers & DM_DLLEXPORT) {
1404                         fputs(next, out); next = ", "; fputs("dllexport", out);
1405                 }
1406                 if (modifiers & DM_THREAD) {
1407                         fputs(next, out); next = ", "; fputs("thread", out);
1408                 }
1409                 if (modifiers & DM_NAKED) {
1410                         fputs(next, out); next = ", "; fputs("naked", out);
1411                 }
1412                 if (modifiers & DM_THREAD) {
1413                         fputs(next, out); next = ", "; fputs("thread", out);
1414                 }
1415                 if (modifiers & DM_SELECTANY) {
1416                         fputs(next, out); next = ", "; fputs("selectany", out);
1417                 }
1418                 if (modifiers & DM_NOTHROW) {
1419                         fputs(next, out); next = ", "; fputs("nothrow", out);
1420                 }
1421                 if (modifiers & DM_NORETURN) {
1422                         fputs(next, out); next = ", "; fputs("noreturn", out);
1423                 }
1424                 if (modifiers & DM_NOINLINE) {
1425                         fputs(next, out); next = ", "; fputs("noinline", out);
1426                 }
1427                 if (modifiers & DM_DEPRECATED) {
1428                         fputs(next, out); next = ", "; fputs("deprecated", out);
1429                         if (declaration->deprecated_string != NULL)
1430                                 fprintf(out, "(\"%s\")",
1431                                         declaration->deprecated_string);
1432                 }
1433                 if (modifiers & DM_RESTRICT) {
1434                         fputs(next, out); next = ", "; fputs("restrict", out);
1435                 }
1436                 if (modifiers & DM_NOALIAS) {
1437                         fputs(next, out); next = ", "; fputs("noalias", out);
1438                 }
1439         }
1440
1441         if (ds_shown)
1442                 fputs(") ", out);
1443 }
1444 #endif
1445
1446 static void print_scope(const scope_t *scope)
1447 {
1448         const entity_t *entity = scope->entities;
1449         for ( ; entity != NULL; entity = entity->base.next) {
1450                 print_indent();
1451                 print_entity(entity);
1452                 fputs("\n", out);
1453         }
1454 }
1455
1456 static void print_namespace(const namespace_t *namespace)
1457 {
1458         fputs("namespace ", out);
1459         if (namespace->base.symbol != NULL) {
1460                 fputs(namespace->base.symbol->string, out);
1461                 fputc(' ', out);
1462         }
1463
1464         fputs("{\n", out);
1465         ++indent;
1466
1467         print_scope(&namespace->members);
1468
1469         --indent;
1470         print_indent();
1471         fputs("}\n", out);
1472 }
1473
1474 /**
1475  * Print a variable or function declaration
1476  */
1477 void print_declaration(const entity_t *entity)
1478 {
1479         assert(is_declaration(entity));
1480         const declaration_t *declaration = &entity->declaration;
1481
1482         print_storage_class((storage_class_tag_t)declaration->declared_storage_class);
1483         if (entity->kind == ENTITY_FUNCTION) {
1484                 function_t *function = (function_t*)declaration;
1485                 if (function->is_inline) {
1486                         if (declaration->modifiers & DM_FORCEINLINE) {
1487                                 fputs("__forceinline ", out);
1488                         } else if (declaration->modifiers & DM_MICROSOFT_INLINE) {
1489                                 fputs("__inline ", out);
1490                         } else {
1491                                 fputs("inline ", out);
1492                         }
1493                 }
1494         }
1495         //print_ms_modifiers(declaration);
1496         switch (entity->kind) {
1497                 case ENTITY_FUNCTION:
1498                         print_type_ext(entity->declaration.type, entity->base.symbol,
1499                                         &entity->function.parameters);
1500
1501                         if (entity->function.statement != NULL) {
1502                                 fputc('\n', out);
1503                                 print_indent();
1504                                 print_statement(entity->function.statement);
1505                                 return;
1506                         }
1507                         break;
1508
1509                 case ENTITY_VARIABLE:
1510                         if (entity->variable.thread_local)
1511                                 fputs("__thread ", out);
1512                         print_type_ext(declaration->type, declaration->base.symbol, NULL);
1513                         if (entity->variable.initializer != NULL) {
1514                                 fputs(" = ", out);
1515                                 print_initializer(entity->variable.initializer);
1516                         }
1517                         break;
1518
1519                 default:
1520                         print_type_ext(declaration->type, declaration->base.symbol, NULL);
1521                         break;
1522         }
1523         fputc(';', out);
1524 }
1525
1526 /**
1527  * Prints an expression.
1528  *
1529  * @param expression  the expression
1530  */
1531 void print_expression(const expression_t *expression)
1532 {
1533         print_expression_prec(expression, PREC_BOTTOM);
1534 }
1535
1536 /**
1537  * Print a declaration.
1538  *
1539  * @param declaration  the declaration
1540  */
1541 void print_entity(const entity_t *entity)
1542 {
1543         if (entity->base.namespc != NAMESPACE_NORMAL && entity->base.symbol == NULL)
1544                 return;
1545
1546         switch ((entity_kind_tag_t)entity->kind) {
1547         case ENTITY_VARIABLE:
1548         case ENTITY_PARAMETER:
1549         case ENTITY_COMPOUND_MEMBER:
1550         case ENTITY_FUNCTION:
1551                 print_declaration(entity);
1552                 return;
1553         case ENTITY_TYPEDEF:
1554                 print_typedef(entity);
1555                 return;
1556         case ENTITY_CLASS:
1557                 /* TODO */
1558                 fputs("class ", out);
1559                 fputs(entity->base.symbol->string, out);
1560                 fputs("; /* TODO */\n", out);
1561                 return;
1562         case ENTITY_STRUCT:
1563                 fputs("struct ", out);
1564                 fputs(entity->base.symbol->string, out);
1565                 if (entity->structe.complete) {
1566                         fputc(' ', out);
1567                         print_compound_definition(&entity->structe);
1568                 }
1569                 fputc(';', out);
1570                 return;
1571         case ENTITY_UNION:
1572                 fputs("union ", out);
1573                 fputs(entity->base.symbol->string, out);
1574                 if (entity->unione.complete) {
1575                         fputc(' ', out);
1576                         print_compound_definition(&entity->unione);
1577                 }
1578                 fputc(';', out);
1579                 return;
1580         case ENTITY_ENUM:
1581                 fputs("enum ", out);
1582                 fputs(entity->base.symbol->string, out);
1583                 fputc(' ', out);
1584                 print_enum_definition(&entity->enume);
1585                 fputc(';', out);
1586                 return;
1587         case ENTITY_NAMESPACE:
1588                 print_namespace(&entity->namespacee);
1589                 return;
1590         case ENTITY_LOCAL_LABEL:
1591                 fprintf(out, "__label__ %s;", entity->base.symbol->string);
1592                 return;
1593         case ENTITY_LABEL:
1594         case ENTITY_ENUM_VALUE:
1595                 panic("print_entity used on unexpected entity type");
1596         case ENTITY_INVALID:
1597                 break;
1598         }
1599         panic("Invalid entity type encountered");
1600 }
1601
1602 /**
1603  * Print the AST of a translation unit.
1604  *
1605  * @param unit   the translation unit
1606  */
1607 void print_ast(const translation_unit_t *unit)
1608 {
1609         entity_t *entity = unit->scope.entities;
1610         for ( ; entity != NULL; entity = entity->base.next) {
1611                 if (entity->kind == ENTITY_ENUM_VALUE)
1612                         continue;
1613                 if (entity->base.namespc != NAMESPACE_NORMAL
1614                                 && entity->base.symbol == NULL)
1615                         continue;
1616                 if (is_generated_entity(entity))
1617                         continue;
1618
1619                 print_indent();
1620                 print_entity(entity);
1621                 fputc('\n', out);
1622         }
1623 }
1624
1625 bool is_constant_initializer(const initializer_t *initializer)
1626 {
1627         switch (initializer->kind) {
1628         case INITIALIZER_STRING:
1629         case INITIALIZER_WIDE_STRING:
1630         case INITIALIZER_DESIGNATOR:
1631                 return true;
1632
1633         case INITIALIZER_VALUE:
1634                 return is_constant_expression(initializer->value.value);
1635
1636         case INITIALIZER_LIST:
1637                 for (size_t i = 0; i < initializer->list.len; ++i) {
1638                         initializer_t *sub_initializer = initializer->list.initializers[i];
1639                         if (!is_constant_initializer(sub_initializer))
1640                                 return false;
1641                 }
1642                 return true;
1643         }
1644         panic("invalid initializer kind found");
1645 }
1646
1647 static bool is_object_with_linker_constant_address(const expression_t *expression)
1648 {
1649         switch (expression->kind) {
1650         case EXPR_UNARY_DEREFERENCE:
1651                 return is_address_constant(expression->unary.value);
1652
1653         case EXPR_SELECT: {
1654                 type_t *base_type = skip_typeref(expression->select.compound->base.type);
1655                 if (is_type_pointer(base_type)) {
1656                         /* it's a -> */
1657                         return is_address_constant(expression->select.compound);
1658                 } else {
1659                         return is_object_with_linker_constant_address(expression->select.compound);
1660                 }
1661         }
1662
1663         case EXPR_ARRAY_ACCESS:
1664                 return is_constant_expression(expression->array_access.index)
1665                         && is_address_constant(expression->array_access.array_ref);
1666
1667         case EXPR_REFERENCE: {
1668                 entity_t *entity = expression->reference.entity;
1669                 if (is_declaration(entity)) {
1670                         switch ((storage_class_tag_t)entity->declaration.storage_class) {
1671                         case STORAGE_CLASS_NONE:
1672                         case STORAGE_CLASS_EXTERN:
1673                         case STORAGE_CLASS_STATIC:
1674                                 return
1675                                         entity->kind != ENTITY_VARIABLE ||
1676                                         !entity->variable.thread_local;
1677
1678                         case STORAGE_CLASS_REGISTER:
1679                         case STORAGE_CLASS_TYPEDEF:
1680                         case STORAGE_CLASS_AUTO:
1681                                 break;
1682                         }
1683                 }
1684                 return false;
1685         }
1686
1687         default:
1688                 return false;
1689         }
1690 }
1691
1692 bool is_address_constant(const expression_t *expression)
1693 {
1694         switch (expression->kind) {
1695         case EXPR_STRING_LITERAL:
1696         case EXPR_WIDE_STRING_LITERAL:
1697         case EXPR_FUNCNAME:
1698         case EXPR_LABEL_ADDRESS:
1699                 return true;
1700
1701         case EXPR_UNARY_TAKE_ADDRESS:
1702                 return is_object_with_linker_constant_address(expression->unary.value);
1703
1704         case EXPR_UNARY_DEREFERENCE: {
1705                 type_t *real_type
1706                         = revert_automatic_type_conversion(expression->unary.value);
1707                 /* dereferencing a function is a NOP */
1708                 if (is_type_function(real_type)) {
1709                         return is_address_constant(expression->unary.value);
1710                 }
1711                 /* FALLTHROUGH */
1712         }
1713
1714         case EXPR_UNARY_CAST: {
1715                 type_t *dest = skip_typeref(expression->base.type);
1716                 if (!is_type_pointer(dest) && (
1717                         dest->kind != TYPE_ATOMIC                                               ||
1718                         !(get_atomic_type_flags(dest->atomic.akind) & ATOMIC_TYPE_FLAG_INTEGER) ||
1719                         get_atomic_type_size(dest->atomic.akind) < get_atomic_type_size(get_intptr_kind())
1720                     ))
1721                         return false;
1722
1723                 return (is_constant_expression(expression->unary.value)
1724                         || is_address_constant(expression->unary.value));
1725         }
1726
1727         case EXPR_BINARY_ADD:
1728         case EXPR_BINARY_SUB: {
1729                 expression_t *left  = expression->binary.left;
1730                 expression_t *right = expression->binary.right;
1731
1732                 if (is_type_pointer(skip_typeref(left->base.type))) {
1733                         return is_address_constant(left) && is_constant_expression(right);
1734                 } else if (is_type_pointer(skip_typeref(right->base.type))) {
1735                         return is_constant_expression(left)     && is_address_constant(right);
1736                 }
1737
1738                 return false;
1739         }
1740
1741         case EXPR_REFERENCE: {
1742                 entity_t *entity = expression->reference.entity;
1743                 if (!is_declaration(entity))
1744                         return false;
1745
1746                 type_t *type = skip_typeref(entity->declaration.type);
1747                 if (is_type_function(type))
1748                         return true;
1749                 if (is_type_array(type)) {
1750                         return is_object_with_linker_constant_address(expression);
1751                 }
1752                 /* Prevent stray errors */
1753                 if (!is_type_valid(type))
1754                         return true;
1755                 return false;
1756         }
1757
1758         case EXPR_ARRAY_ACCESS: {
1759                 type_t *const type =
1760                         skip_typeref(revert_automatic_type_conversion(expression));
1761                 return
1762                         is_type_array(type)                                    &&
1763                         is_constant_expression(expression->array_access.index) &&
1764                         is_address_constant(expression->array_access.array_ref);
1765         }
1766
1767         case EXPR_CONDITIONAL: {
1768                 expression_t *const c = expression->conditional.condition;
1769                 if (!is_constant_expression(c))
1770                         return false;
1771
1772                 if (fold_constant_to_bool(c)) {
1773                         expression_t const *const t = expression->conditional.true_expression;
1774                         return is_address_constant(t != NULL ? t : c);
1775                 } else {
1776                         return is_address_constant(expression->conditional.false_expression);
1777                 }
1778         }
1779
1780         default:
1781                 return false;
1782         }
1783 }
1784
1785 /**
1786  * Check if the given expression is a call to a builtin function
1787  * returning a constant result.
1788  */
1789 static bool is_builtin_const_call(const expression_t *expression)
1790 {
1791         expression_t *function = expression->call.function;
1792         if (function->kind != EXPR_REFERENCE)
1793                 return false;
1794         reference_expression_t *ref = &function->reference;
1795         if (ref->entity->kind != ENTITY_FUNCTION)
1796                 return false;
1797
1798         switch (ref->entity->function.btk) {
1799         case bk_gnu_builtin_huge_val:
1800         case bk_gnu_builtin_inf:
1801         case bk_gnu_builtin_inff:
1802         case bk_gnu_builtin_infl:
1803         case bk_gnu_builtin_nan:
1804         case bk_gnu_builtin_nanf:
1805         case bk_gnu_builtin_nanl:
1806                 return true;
1807         default:
1808                 return false;
1809         }
1810
1811 }
1812
1813 static bool is_constant_pointer(const expression_t *expression)
1814 {
1815         if (is_constant_expression(expression))
1816                 return true;
1817
1818         switch (expression->kind) {
1819         case EXPR_UNARY_CAST:
1820                 return is_constant_pointer(expression->unary.value);
1821         default:
1822                 return false;
1823         }
1824 }
1825
1826 static bool is_object_with_constant_address(const expression_t *expression)
1827 {
1828         switch (expression->kind) {
1829         case EXPR_SELECT: {
1830                 expression_t *compound      = expression->select.compound;
1831                 type_t       *compound_type = compound->base.type;
1832                 compound_type = skip_typeref(compound_type);
1833                 if (is_type_pointer(compound_type)) {
1834                         return is_constant_pointer(compound);
1835                 } else {
1836                         return is_object_with_constant_address(compound);
1837                 }
1838         }
1839
1840         case EXPR_ARRAY_ACCESS: {
1841                 array_access_expression_t const* const array_access =
1842                         &expression->array_access;
1843                 return
1844                         is_constant_expression(array_access->index) && (
1845                                 is_object_with_constant_address(array_access->array_ref) ||
1846                                 is_constant_pointer(array_access->array_ref)
1847                         );
1848         }
1849
1850         case EXPR_UNARY_DEREFERENCE:
1851                 return is_constant_pointer(expression->unary.value);
1852         default:
1853                 return false;
1854         }
1855 }
1856
1857 bool is_constant_expression(const expression_t *expression)
1858 {
1859         switch (expression->kind) {
1860
1861         case EXPR_CONST:
1862         case EXPR_CHARACTER_CONSTANT:
1863         case EXPR_WIDE_CHARACTER_CONSTANT:
1864         case EXPR_CLASSIFY_TYPE:
1865         case EXPR_OFFSETOF:
1866         case EXPR_ALIGNOF:
1867         case EXPR_BUILTIN_CONSTANT_P:
1868         case EXPR_BUILTIN_TYPES_COMPATIBLE_P:
1869         case EXPR_REFERENCE_ENUM_VALUE:
1870                 return true;
1871
1872         case EXPR_SIZEOF: {
1873                 type_t *const type = skip_typeref(expression->typeprop.type);
1874                 return !is_type_array(type) || !type->array.is_vla;
1875         }
1876
1877         case EXPR_STRING_LITERAL:
1878         case EXPR_WIDE_STRING_LITERAL:
1879         case EXPR_FUNCNAME:
1880         case EXPR_LABEL_ADDRESS:
1881         case EXPR_SELECT:
1882         case EXPR_VA_START:
1883         case EXPR_VA_ARG:
1884         case EXPR_VA_COPY:
1885         case EXPR_STATEMENT:
1886         case EXPR_REFERENCE:
1887         case EXPR_UNARY_POSTFIX_INCREMENT:
1888         case EXPR_UNARY_POSTFIX_DECREMENT:
1889         case EXPR_UNARY_PREFIX_INCREMENT:
1890         case EXPR_UNARY_PREFIX_DECREMENT:
1891         case EXPR_UNARY_ASSUME: /* has VOID type */
1892         case EXPR_UNARY_DEREFERENCE:
1893         case EXPR_UNARY_DELETE:
1894         case EXPR_UNARY_DELETE_ARRAY:
1895         case EXPR_UNARY_THROW:
1896         case EXPR_BINARY_ASSIGN:
1897         case EXPR_BINARY_MUL_ASSIGN:
1898         case EXPR_BINARY_DIV_ASSIGN:
1899         case EXPR_BINARY_MOD_ASSIGN:
1900         case EXPR_BINARY_ADD_ASSIGN:
1901         case EXPR_BINARY_SUB_ASSIGN:
1902         case EXPR_BINARY_SHIFTLEFT_ASSIGN:
1903         case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
1904         case EXPR_BINARY_BITWISE_AND_ASSIGN:
1905         case EXPR_BINARY_BITWISE_XOR_ASSIGN:
1906         case EXPR_BINARY_BITWISE_OR_ASSIGN:
1907         case EXPR_BINARY_COMMA:
1908         case EXPR_ARRAY_ACCESS:
1909                 return false;
1910
1911         case EXPR_UNARY_TAKE_ADDRESS:
1912                 return is_object_with_constant_address(expression->unary.value);
1913
1914         case EXPR_CALL:
1915                 return is_builtin_const_call(expression);
1916
1917         case EXPR_UNARY_NEGATE:
1918         case EXPR_UNARY_PLUS:
1919         case EXPR_UNARY_BITWISE_NEGATE:
1920         case EXPR_UNARY_NOT:
1921                 return is_constant_expression(expression->unary.value);
1922
1923         case EXPR_UNARY_CAST:
1924         case EXPR_UNARY_CAST_IMPLICIT:
1925                 return is_type_arithmetic(skip_typeref(expression->base.type))
1926                         && is_constant_expression(expression->unary.value);
1927
1928         case EXPR_BINARY_ADD:
1929         case EXPR_BINARY_SUB:
1930         case EXPR_BINARY_MUL:
1931         case EXPR_BINARY_DIV:
1932         case EXPR_BINARY_MOD:
1933         case EXPR_BINARY_EQUAL:
1934         case EXPR_BINARY_NOTEQUAL:
1935         case EXPR_BINARY_LESS:
1936         case EXPR_BINARY_LESSEQUAL:
1937         case EXPR_BINARY_GREATER:
1938         case EXPR_BINARY_GREATEREQUAL:
1939         case EXPR_BINARY_BITWISE_AND:
1940         case EXPR_BINARY_BITWISE_OR:
1941         case EXPR_BINARY_BITWISE_XOR:
1942         case EXPR_BINARY_SHIFTLEFT:
1943         case EXPR_BINARY_SHIFTRIGHT:
1944         case EXPR_BINARY_ISGREATER:
1945         case EXPR_BINARY_ISGREATEREQUAL:
1946         case EXPR_BINARY_ISLESS:
1947         case EXPR_BINARY_ISLESSEQUAL:
1948         case EXPR_BINARY_ISLESSGREATER:
1949         case EXPR_BINARY_ISUNORDERED:
1950                 return is_constant_expression(expression->binary.left)
1951                         && is_constant_expression(expression->binary.right);
1952
1953         case EXPR_BINARY_LOGICAL_AND: {
1954                 expression_t const *const left = expression->binary.left;
1955                 if (!is_constant_expression(left))
1956                         return false;
1957                 if (fold_constant_to_bool(left) == false)
1958                         return true;
1959                 return is_constant_expression(expression->binary.right);
1960         }
1961
1962         case EXPR_BINARY_LOGICAL_OR: {
1963                 expression_t const *const left = expression->binary.left;
1964                 if (!is_constant_expression(left))
1965                         return false;
1966                 if (fold_constant_to_bool(left) == true)
1967                         return true;
1968                 return is_constant_expression(expression->binary.right);
1969         }
1970
1971         case EXPR_COMPOUND_LITERAL:
1972                 return is_constant_initializer(expression->compound_literal.initializer);
1973
1974         case EXPR_CONDITIONAL: {
1975                 expression_t *condition = expression->conditional.condition;
1976                 if (!is_constant_expression(condition))
1977                         return false;
1978
1979                 if (fold_constant_to_bool(condition) == true) {
1980                         expression_t const *const t = expression->conditional.true_expression;
1981                         return t == NULL || is_constant_expression(t);
1982                 } else {
1983                         return is_constant_expression(expression->conditional.false_expression);
1984                 }
1985         }
1986
1987         case EXPR_INVALID:
1988                 return true;
1989
1990         case EXPR_UNKNOWN:
1991                 break;
1992         }
1993         panic("invalid expression found (is constant expression)");
1994 }
1995
1996 /**
1997  * Initialize the AST construction.
1998  */
1999 void init_ast(void)
2000 {
2001         obstack_init(&ast_obstack);
2002 }
2003
2004 /**
2005  * Free the AST.
2006  */
2007 void exit_ast(void)
2008 {
2009         obstack_free(&ast_obstack, NULL);
2010 }
2011
2012 /**
2013  * Set the output stream for the AST printer.
2014  *
2015  * @param stream  the output stream
2016  */
2017 void ast_set_output(FILE *stream)
2018 {
2019         out = stream;
2020         type_set_output(stream);
2021 }
2022
2023 /**
2024  * Allocate an AST object of the given size.
2025  *
2026  * @param size  the size of the object to allocate
2027  *
2028  * @return  A new allocated object in the AST memeory space.
2029  */
2030 void *(allocate_ast)(size_t size)
2031 {
2032         return _allocate_ast(size);
2033 }